Advertisement

Introduction

  • Julien YvonnetEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 258)

Abstract

The need for materials with higher performances is a strategic issue in engineering. Composite materials, i.e., combining at least two constituents with desired properties like mechanical resistance and lightness, have been developed and applied in many fields of engineering, and are now routinely used in many applications, including automotive industry, aircrafts, drones, biomedicals, wind turbines, sports, and leisure, etc. (see reviews in [1, 2, 3, 4, 5, 6]). On the other hand, heterogeneous materials are found in many other engineering or science fields, such as cementitious materials in civil engineering or biomechanics. More recently, the progress in manufacturing techniques have allowed producing very complex materials like metallic foams (see Fig. 1.1a), or even allowed producing materials with “on demand” microstructures [7, 8] via 3D printing techniques, see Fig. 1.1b. Developing new materials involves synthesis, manufacturing, and testing for certification. This process is long and costly, and usually only involves a “trial and error” procedure, rather than a clear optimization methodology.

References

  1. 1.
    Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos Part A: Appl Sci Manuf 30(12):1445–1461CrossRefGoogle Scholar
  2. 2.
    Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930CrossRefGoogle Scholar
  3. 3.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRefGoogle Scholar
  4. 4.
    Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM J Miner Met Mater Soc 58(11):80–86CrossRefGoogle Scholar
  5. 5.
    Chawla KK, Chawla N (2014) Metal matrix composites: automotive applications. Encycl Automot EngGoogle Scholar
  6. 6.
    Gay D (2014) Composite materials: design and applications. CRC Press, Boca RatonGoogle Scholar
  7. 7.
    Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6:8643CrossRefGoogle Scholar
  8. 8.
    Quan Z, Larimore Z, Wu A, Yu J, Qin X, Mirotznik M, Suhr J, Byun J-H, Oh Y, Chou T-W (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 126:139–148CrossRefGoogle Scholar
  9. 9.
    Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17CrossRefGoogle Scholar
  10. 10.
    Buryachenko V (2007) Micromechanics of heterogeneous materials. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  11. 11.
    Milton GW (2002) Theory of composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. 12.
    Bornert M (2008) Homogenization in mechanics of materials. ISTE, Newport BeachGoogle Scholar
  13. 13.
    Auriault J-L, Boutin C, Geindreau C (2009) Homogénéisation de phénomènes couplés en milieux hétérogènes. Hermès Science PublicationsGoogle Scholar
  14. 14.
    Torquato S (2001) Random heterogeneous materials: microstructure and macroscopic properties. Springer, BerlinGoogle Scholar
  15. 15.
    Suquet P (2014) Continuum micromechanics, vol 377. Springer, BerlinGoogle Scholar
  16. 16.
    Dvorak G (2013) Micromechanics of composites materials. Springer, New YorkCrossRefGoogle Scholar
  17. 17.
    Li S, Wang G (2008) Introduction to micromechanics and nanomechanics. World Scientific Publication, SingaporeGoogle Scholar
  18. 18.
    Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. J Compos Mater 1(2):152–164CrossRefGoogle Scholar
  19. 19.
    Suquet P, Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palenzia E, Zaoui A (eds) Homogenization techniques for composite materials. Lecture notes in physics, vol 272Google Scholar
  20. 20.
    Michel J-C, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143MathSciNetCrossRefGoogle Scholar
  21. 21.
    Renard J, Marmonier MF (1987) Etude de l’initiation de l’endommagement dans la matrice d’un matériau composite par une méthode d’homogénéisation. Aerosp Sci Technol 9:36–51Google Scholar
  22. 22.
    Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structure. Comput Mater Sci 16(1–4):433–454Google Scholar
  23. 23.
    Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464CrossRefGoogle Scholar
  24. 24.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRefGoogle Scholar
  25. 25.
    Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182CrossRefGoogle Scholar
  26. 26.
    Geers MGD, Yvonnet J (2016) Multiscale modeling of microstructure-property relations. MRS Bull 41(08):610–616CrossRefGoogle Scholar
  27. 27.
    Schroeder J, Labusch M, Keip M-A (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280CrossRefGoogle Scholar
  28. 28.
    Patel B, Zohdi TI (2016) Numerical estimation of effective electromagnetic properties for design of particulate composites. Mater Des 94:546–553CrossRefGoogle Scholar
  29. 29.
    Krushynska AO, Kouznetsova VG, Geers MGD (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mech Phys Solids 71:179–196CrossRefGoogle Scholar
  30. 30.
    Escoda J, Willot F, Jeulin D, Sanahuja J, Toulemonde C (2011) Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image. Cem Concr Res 41(5):542–556CrossRefGoogle Scholar
  31. 31.
    Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198:2723–2737CrossRefGoogle Scholar
  32. 32.
    Coenen EWC, Kouznetsova VG, Bosco E, Geers MGD (2012) A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. Int J Fract 178(1–2):157–178CrossRefGoogle Scholar
  33. 33.
    Bosco E, Kouznetsova VG, Geers MGD (2015) Multi-scale computational homogenization–localization for propagating discontinuities using X-FEM. Comput Methods Appl Mech Eng 102(3–4):496–527MathSciNetzbMATHGoogle Scholar
  34. 34.
    Oliver J, Caicedo M, Roubin E, Huespe AE, Hernández JA (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427MathSciNetCrossRefGoogle Scholar
  35. 35.
    Clément A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82MathSciNetCrossRefGoogle Scholar
  36. 36.
  37. 37.
  38. 38.
  39. 39.
    Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer Science & Business Media, New YorkGoogle Scholar
  40. 40.
    Ghosh S, Dimiduk DM (2011) Computational methods for microstructure-property relationships. Springer, BerlinGoogle Scholar
  41. 41.
    Fish J (2013) Practical multiscaling. Wiley, New YorkGoogle Scholar
  42. 42.
    Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses des MINESGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MSME LaboratoryUniversité Paris-Est Marne-la-ValléeMarne-la-Vallée Cedex2France

Personalised recommendations