Advertisement

Dental Stem Cells in Regenerative Medicine: Emerging Trends and Prospects in the Era of Bioinformatics

  • Saravanan Ramaswamy
  • Kavitha Odathurai Marusamy
  • Gauthaman KalamegamEmail author
Chapter

Abstract

The craniofacial skeleton comprising the teeth, gums and tongue is an excellent model of organogenesis. Mesenchymal stem cells (MSCs) present within various zones of the oro-dental tissue exhibit exceptional regeneration potential and contribute to tissue restoration and regeneration following infection/inflammation or trauma. Oro-dental disorders are multifactorial and encompass a wide array of diseases involving tooth germ formation, tooth shape, number, size and alignment. Oral microbial pathogens and their colonization as biofilm largely remain a threat to oral and dental health. Biofilms are associated with dental caries, periodontitis and peri-implantitis which often leads to oral disorders, tissue loss and dental implant failures. Scientific advancements have led to the identification of newer nanomaterials which can resist biofilms. Parallelly, isolation and differentiation of MSCs from within the dental structures and its adnexa offer great promise for dental restoration/regeneration. Robust screening systems are available today and provide an opportunity to screen pathogen susceptibility, properties of nanomaterials, stem cell plasticity, and gene, protein and cellular interactions. High-throughput technologies and availability of vast information from transcriptomics, epigenetics, genomics, proteomics and metabolomics studies will enable in-depth understanding of the oro-dental disorders as well as the regenerative/differentiation potential of the dental stem cells. Insights from HTS will pave way for successful utilization and effective clinical translation of the dental stem cells and bring about a paradigm shift in the field of tissue engineering and regenerative medicine applications in relation to dentistry.

Keywords

Dental Biofilms Nanomaterials Stem cells Regeneration Omics 

Abbreviations

APC

Adenomatous polyposis coli

ATP

Adenosine triphosphate

BLAST

Basic local alignment search tool

CCAP

Cancer Chromosome Aberration Project

CGAP

Cancer Genome Anatomy Project

cGMP

Current Good Manufacturing Practice

COMS

Complementary metal oxide semiconductor

CT

Computed tomography

DAVID

Database for annotation, visualization and integrated discovery

DNA

Deoxyribonucleic acid

dNTPs

Deoxyribonucleotide triphosphates

DPSCs

Dental pulp stem cells

EBI

European Bioinformatics Institute

EMBL

European molecular biology laboratory

ESCs

Embryonic stem cells

G-CSF

Granulocyte colony-stimulating factor

GEO

Gene expression omnibus

GO

Gene ontology

HCS

High-content screening

HGBASE

Human genic biallelic sequences

HGP

Human Genome Project

HTS

High-throughput screening

IKB

Immunome knowledge base

iPSCs

Induced pluripotent stem cells

KEGG

Kyoto Encyclopedia of Genes and Genomes

miRNA

MicroRNA

MRI

Magnetic resonance imaging

MSCs

Mesenchymal stem cells

MSD

Macromolecular structure database

NCBI

National Center for Biotechnology Information

NIH

National Institutes of Health

NM

Nanomaterial

OMIM

Online Mendelian inheritance in man

ORF Finder

Open reading frame finder

PCR

Polymerase chain reaction

PDLSCs

Periodontal ligament stem cells

RefSeq

Reference sequence

RNA

Ribonucleic acid

SAGE

Serial analysis of gene expression

SCAP

Stem cells from apical papilla

SGSCs

Salivary gland stem cells

SMRT

Single-molecule real time

SMS

Single-molecule sequencing

SNP

Single-nucleotide polymorphisms

SOLiD

Sequencing oligonucleotides by ligation and detection

UniProt

Universal Protein resource

UniRef

UniProt Reference

ZMW

Zero-mode waveguides

Notes

Acknowledgements

The authors acknowledge the grant (13-MED2437-03) funding provided by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, The Kingdom of Saudi Arabia. They also acknowledge with thanks the Science and Technology Unit (STU), King Abdulaziz University for their excellent technical support.

Statement of Conflicts of Interest 

All authors have no conflicts of interests.

References

  1. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38:758–768CrossRefGoogle Scholar
  2. Ali J, Sabiha B, Jan HU, Haider SA, Khan AA, Ali SS (2017) Genetic etiology of oral cancer. Oral Oncol 70:23–28PubMedCrossRefGoogle Scholar
  3. Alongi DJ et al (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5:617–631PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amirkia V, Qiubao P (2012) Cell-culture database: literature-based reference tool for human and mammalian experimentallybased cell culture applications. Bioinformation 8:237PubMedPubMedCentralCrossRefGoogle Scholar
  5. Apweiler R et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arnsdorf EJ, Jones LM, Carter DR, Jacobs CR (2009) The periosteum as a cellular source for functional tissue engineering. Tissue Eng A 15:2637–2642CrossRefGoogle Scholar
  7. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beikler T, Peters U, Prior K, Eisenacher M, Flemmig TF (2008) Gene expression in periodontal tissues following treatment. BMC Med Genet 1:30.  https://doi.org/10.1186/1755-8794-1-30CrossRefGoogle Scholar
  9. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59.  https://doi.org/10.1038/nature07517CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ben-Yakar A (2019) High-content and high-throughput in vivo drug screening platforms using microfluidics. Assay Drug Dev Technol 17:8–13PubMedCrossRefGoogle Scholar
  11. Bernimoulin JP (2003) Recent concepts in plaque formation. J Clin Periodontol 30:7–9PubMedCrossRefGoogle Scholar
  12. Bongso A, Fong C-Y, Ng S-C, Ratnam S (1994) Fertilization and early embryology: isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117PubMedCrossRefGoogle Scholar
  13. Braslavsky I, Hebert B, Kartalov E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100:3960–3964.  https://doi.org/10.1073/pnas.0230489100CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brookes AJ et al (2000) HGBASE: a database of SNPs and other variations in and around human genes. Nucleic Acids Res 28:356–360PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carinci F, Palmieri A, Girardi A, Cura F, Scapoli L, Lauritano D (2015) Genetic risk assessment of periodontal disease in healthy patients. J Forensics Res 6:260Google Scholar
  16. Catón J, Bostanci N, Remboutsika E, De Bari C, Mitsiadis TA (2011) Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J Cell Mol Med 15:1054–1065PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen F-M, Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev 16:219–255PubMedCrossRefGoogle Scholar
  18. Chen F-M et al (2016) Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther 7:33PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chimenti I et al (2012) Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. In: Somatic stem cells: Methods and Protocols. Humana Press, Totowa, NJ, pp 327–338CrossRefGoogle Scholar
  20. Cho M, Cho T-J, Lim JM, Lee G, Cho J (2013) The establishment of mouse embryonic stem cell cultures on 96-well plates for high-throughput screening. Mol Cells 35:456–461PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chou C-H et al (2015) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cooper PR, Chicca IJ, Holder MJ, Milward MR (2017) Inflammation and regeneration in the dentin-pulp complex: net gain or net loss? J Endod 43:S87–S94PubMedCrossRefGoogle Scholar
  23. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefGoogle Scholar
  24. Crawford PJ, Aldred M, Bloch-Zupan A (2007) Amelogenesis imperfecta. Orphanet J Rare Dis 2:17PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dabeva MD, Shafritz DA (2003) Hepatic stem cells and liver repopulation. In: Seminars in liver disease, 2003. Vol 04. Copyright© 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.:+ 1 (212) 584-4662, pp 349–362Google Scholar
  26. Davies MC et al (2010) High throughput surface characterization: a review of a new tool for screening prospective biomedical material arrays. J Drug Targeting 18:741–751CrossRefGoogle Scholar
  27. De Coppi P et al (2006) Isolation of mesenchymal stem cells from human vermiform appendix. J Surg Res 135:85–91PubMedCrossRefGoogle Scholar
  28. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3CrossRefGoogle Scholar
  29. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  30. Donaldson K, Poland CA (2013) Nanotoxicity: challenging the myth of nano-specific toxicity. Current Opinion in Biotechnology 24:724–734PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dowthwaite GP et al (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117:889–897PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847CrossRefGoogle Scholar
  33. Ferreira JN, Rungarunlert S, Urkasemsin G, Adine C, Souza GR (2016) Three-dimensional bioprinting nanotechnologies towards clinical application of stem cells and their secretome in salivary gland regeneration. Stem Cells Int 2016:7564689PubMedPubMedCentralCrossRefGoogle Scholar
  34. Foster JS, Kolenbrander PE (2004) Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70:4340–4348.  https://doi.org/10.1128/aem.70.7.4340-4348.2004CrossRefPubMedPubMedCentralGoogle Scholar
  35. Friedenstein A, Piatetzky-Shapiro I, Petrakova K (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMedPubMedCentralGoogle Scholar
  36. Gallo R et al (2007) Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differ 14:1860PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80:1136–1145PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microbial Physiology 46:202–256Google Scholar
  39. Green ED, Watson JD, Collins FS (2015) Human Genome Project: twenty-five years of big biology. Nature 526:29PubMedPubMedCentralCrossRefGoogle Scholar
  40. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144.  https://doi.org/10.1093/nar/gkj112CrossRefGoogle Scholar
  41. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97:13625–13630PubMedCrossRefGoogle Scholar
  42. Guzmán-Armstrong S (2005) Rampant caries. J Sch Nurs 21:272–278PubMedCrossRefGoogle Scholar
  43. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017PubMedCrossRefGoogle Scholar
  44. Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR (2010) High throughput methods applied in biomaterial development and discovery. Biomaterials 31:187–198PubMedCrossRefGoogle Scholar
  45. Huang GT-J, Sonoyama W, Liu Y, Liu H, Wang S, Shi S (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34:645–651PubMedPubMedCentralCrossRefGoogle Scholar
  46. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jenkinson HF (2011) Beyond the oral microbiome. Environ Microbiol 13:3077–3087PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kang S-G et al (2010) Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67:711–720PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kim YG et al (2016) Transcriptome sequencing of gingival biopsies from chronic periodontitis patients reveals novel gene expression and splicing patterns. Hum Genomics 10:28.  https://doi.org/10.1186/s40246-016-0084-0CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413–437PubMedCrossRefGoogle Scholar
  53. Kuroda K, Caputo GA (2013) Antimicrobial polymers as synthetic mimics of host‐defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:49–66PubMedCrossRefGoogle Scholar
  54. Laird PW (2003) Early detection: the power and the promise of DNA methylation markers. Nat Rev Cancer 3:253PubMedCrossRefGoogle Scholar
  55. Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470:187–197.  https://doi.org/10.1038/nature09792CrossRefGoogle Scholar
  56. Lane L et al (2011) neXtProt: a knowledge platform for human proteins. Nucleic Acids Res 40:D76–D83PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ledder RG, Gilbert P, Pluen A, Sreenivasan PK, De Vizio W, McBain AJ (2006) Individual microflora beget unique oral microcosms. J Appl Microbiol 100:1123–1131.  https://doi.org/10.1111/j.1365-2672.2006.02847.xCrossRefPubMedGoogle Scholar
  58. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686.  https://doi.org/10.1126/science.1079700CrossRefPubMedGoogle Scholar
  59. Lim J-Y et al (2013) Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS One 8:e71167PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lin CH, Chang HC, Hsu CH (2016) A microfluidic platform for high-throughput single-cell isolation and culture. J Vis Exp.  https://doi.org/10.3791/54105
  61. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353PubMedPubMedCentralGoogle Scholar
  62. Lombaert IM et al (2008) Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 3:e2063PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lombaert I, Movahednia MM, Adine C, Ferreira JN (2017) Concise review: salivary gland regeneration: therapeutic approaches from stem cells to tissue organoids. Stem Cells 35:97–105PubMedCrossRefGoogle Scholar
  64. Lu H, Xie C, Zhao Y-M, Chen F-M (2013) Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine. Cell Transplant 22:205–229PubMedCrossRefGoogle Scholar
  65. Luder HU (2015) Malformations of the tooth root in humans. Front Physiol 6:307PubMedPubMedCentralCrossRefGoogle Scholar
  66. Maeda H, Wada N, Nakamuta H, Akamine A (2004) Human periapical granulation tissue contains osteogenic cells. Cell Tissue Res 315:203–208PubMedCrossRefGoogle Scholar
  67. Magennis E, Hook A, Davies M, Alexander C, Williams P, Alexander MR (2016) Engineering serendipity: high-throughput discovery of materials that resist bacterial attachment. Acta Biomaterialia 34:84–92PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39PubMedCrossRefGoogle Scholar
  69. Marcus AJ, Woodbury D (2008) Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 12:730–742PubMedPubMedCentralCrossRefGoogle Scholar
  70. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380.  https://doi.org/10.1038/nature03959CrossRefPubMedPubMedCentralGoogle Scholar
  71. Marrelli M, Paduano F, Tatullo M (2013) Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. Int J Biol Sci 9:1070PubMedPubMedCentralCrossRefGoogle Scholar
  72. Marrelli M, Paduano F, Tatullo M (2015) Human periapical cyst–mesenchymal stem cells differentiate into neuronal cells. J Dent Res 94:843–852PubMedPubMedCentralCrossRefGoogle Scholar
  73. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271PubMedCrossRefGoogle Scholar
  74. Marsh PD (2006) Dental plaque as a biofilm and a microbial community–implications for health and disease. BMC Oral health BioMed Central 1:S14CrossRefGoogle Scholar
  75. Martin C, Li T, Hegarty E, Zhao P, Mondal S, Ben-Yakar A (2018) Line excitation array detection fluorescence microscopy at 0.8 million frames per second. Nat Commun 9:4499PubMedPubMedCentralCrossRefGoogle Scholar
  76. Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen MA, Pitaru S (2010) The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells 28:984–995PubMedGoogle Scholar
  77. McBain AJ, Sissons C, Ledder RG, Sreenivasan PK, De Vizio W, Gilbert P (2005) Development and characterization of a simple perfused oral microcosm. J Appl Microbiol 98:624–634.  https://doi.org/10.1111/j.1365-2672.2004.02483.xCrossRefPubMedGoogle Scholar
  78. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 100:5807–5812PubMedCrossRefGoogle Scholar
  79. Mogushi K, Tanaka H (2013) PathAct: a novel method for pathway analysis using gene expression profiles. Bioinformation 9:394PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mondal S, Hegarty E, Martin C, Gökçe SK, Ghorashian N, Ben-Yakar A (2016) Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model. Nat Commun 7:13023PubMedPubMedCentralCrossRefGoogle Scholar
  81. Morsczeck C et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165PubMedCrossRefGoogle Scholar
  82. Nair P (2004) Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med 15:348–381PubMedCrossRefGoogle Scholar
  83. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, Matsushita K (2017) Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther 8:61PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2012) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–621PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nishimura D (2001) BioCarta Biotech Software & Internet Report: The Computer Software Journal for Scient 2:117–120Google Scholar
  86. Nyren P, Lundin A (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem 151:504–509PubMedCrossRefGoogle Scholar
  87. Ono H, Obana A, Usami Y, Sakai M, Nohara K, Egusa H, Sakai T (2015) Regenerating salivary glands in the microenvironment of induced pluripotent stem cells. Biomed Res Int 2015:1Google Scholar
  88. Ortutay C, Vihinen M (2009) Immunome knowledge base (IKB): an integrated service for immunome research. BMC Immunol 10:3PubMedPubMedCentralCrossRefGoogle Scholar
  89. Owen M (1985) Lineage of osteogenic cells and their relationship to the stromal system. In: Peck WA, editor. Bone and mineral research, Vol. 3. Amsterdam: Elsevier Science Publishers; pp 1–25Google Scholar
  90. Pamies D et al (2018) Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX 35:353–378.  https://doi.org/10.14573/altex.1710081CrossRefPubMedGoogle Scholar
  91. Park D, Lim J, Park JY, Lee S-H (2015) Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cells Transl Med 4:1352–1368PubMedPubMedCentralCrossRefGoogle Scholar
  92. Patel J, Gudehithlu KP, Dunea G, Arruda JA, Singh AK (2010) Foreign body-induced granulation tissue is a source of adult stem cells. Transl Res 155:191–199PubMedCrossRefGoogle Scholar
  93. Pattyn F et al (2006) methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics 7:496PubMedPubMedCentralCrossRefGoogle Scholar
  94. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME (2012) Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 25:193–213.  https://doi.org/10.1128/cmr.00013-11CrossRefPubMedPubMedCentralGoogle Scholar
  95. Prasad MK et al (2016) A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet 53:98–110PubMedCrossRefGoogle Scholar
  96. Prina-Mello A, Crosbie-Staunton K, Salas G, del Puerto Morales M, Volkov Y (2013) Multiparametric toxicity evaluation of SPIONs by high content screening technique: identification of biocompatible multifunctional nanoparticles for nanomedicine Ieee. Trans Magn 49:377–382CrossRefGoogle Scholar
  97. Pringle S et al (2016) Human salivary gland stem cells functionally restore radiation damaged salivary glands. Stem Cells 34:640–652PubMedCrossRefGoogle Scholar
  98. Roberts AP, Mullany P (2010) Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther 8:1441–1450.  https://doi.org/10.1586/eri.10.106CrossRefPubMedGoogle Scholar
  99. Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352.  https://doi.org/10.1038/nature10242CrossRefGoogle Scholar
  100. Sato A, Okumura K, Matsumoto S, Hattori K, Hattori S, Shinohara M, Endo F (2007) Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands. Cloning Stem Cells 9:191–205PubMedCrossRefGoogle Scholar
  101. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59PubMedPubMedCentralCrossRefGoogle Scholar
  102. Seo B-M et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155CrossRefGoogle Scholar
  103. Shendure J et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732.  https://doi.org/10.1126/science.1117389CrossRefGoogle Scholar
  104. Short HB, Clark VL, Kellogg DS Jr, Young FE (1982) Anaerobic survival of clinical isolates and laboratory strains of Neisseria gonorrhoea: use in transfer and storage. J Clin Microbiol 15:915–919PubMedPubMedCentralGoogle Scholar
  105. Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57:1539–1550PubMedCrossRefGoogle Scholar
  106. Smith LM et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679.  https://doi.org/10.1038/321674a0CrossRefPubMedGoogle Scholar
  107. Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40:2517–2522PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stoesser G et al (2002) The EMBL nucleotide sequence database. Nucleic Acids Res 30:21–26PubMedPubMedCentralCrossRefGoogle Scholar
  109. Stookey GK (2008) The effect of saliva on dental caries. J Am Dent Assoc 139(Suppl):11s–17sPubMedCrossRefGoogle Scholar
  110. Sud M et al (2015) Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44:D463–D470PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sumiyama K, Matsumoto N, Garcon-Yoshida J, Ukai H, Ueda HR, Tanaka Y (2018) Easy and efficient production of completely embryonic-stem-cell-derived mice using a micro-aggregation device. PLoS One 13:e0203056.  https://doi.org/10.1371/journal.pone.0203056CrossRefPubMedPubMedCentralGoogle Scholar
  112. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:1282–1288PubMedCrossRefGoogle Scholar
  113. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tatullo M, Codispoti B, Pacifici A, Palmieri F, Marrelli M, Pacifici L, Paduano F (2017) Potential use of human periapical cyst-mesenchymal stem cells (hPCy-MSCs) as a novel stem cell source for regenerative medicine applications. Front Cell Dev Biol 5:103PubMedPubMedCentralCrossRefGoogle Scholar
  115. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts science, vol 282, pp 1145–1147Google Scholar
  116. Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778PubMedCrossRefGoogle Scholar
  117. Tran SD et al (2013) Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS One 8:e61632PubMedPubMedCentralCrossRefGoogle Scholar
  118. Tseng SC (1989) Concept and application of limbal stem cells. Eye 3:141PubMedCrossRefGoogle Scholar
  119. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426.  https://doi.org/10.1016/j.tig.2014.07.001CrossRefPubMedPubMedCentralGoogle Scholar
  120. van Vliet E (2011) Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX 28:17–44PubMedCrossRefGoogle Scholar
  121. Van Vliet E et al (2014) Current approaches and future role of high content imaging in safety sciences and drug discovery Alternatives to Animal Experimentation. ALTEX 31:479–493PubMedCrossRefGoogle Scholar
  122. Velugula-Yellela SR et al (2018) Use of high-throughput automated microbioreactor system for production of model IgG1 in CHO Cells. J Vis Exp JoVE.  https://doi.org/10.3791/58231
  123. von Bültzingslöwen I et al (2007) Salivary dysfunction associated with systemic diseases: systematic review and clinical management recommendations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:S57. e51–S57. e15CrossRefGoogle Scholar
  124. Wang F et al (2017) Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs. BMC Genomics 18:148.  https://doi.org/10.1186/s12864-017-3546-4CrossRefPubMedPubMedCentralGoogle Scholar
  125. Wendell S et al (2010) Taste genes associated with dental caries. J Dent Res 89:1198–1202PubMedPubMedCentralCrossRefGoogle Scholar
  126. Werneck R et al (2011) A major gene effect controls resistance to caries. J Dent Res 90:735–739PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wheeler DL et al (2006) Database resources of the national center for biotechnology information. Nucleic Acids Res 35:D5–D12PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wishart DS, Mandal R, Stanislaus A, Ramirez-Gaona M (2016) Cancer metabolomics and the human metabolome database. Meta 6:10Google Scholar
  129. Yang ZH et al (2009) Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res 44:199–210PubMedCrossRefGoogle Scholar
  130. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saravanan Ramaswamy
    • 1
  • Kavitha Odathurai Marusamy
    • 1
  • Gauthaman Kalamegam
    • 2
    • 3
    Email author
  1. 1.Faculty of DentistryIbn Sina National College for Medical SciencesAl Mahjar, JeddahSaudi Arabia
  2. 2.Stem Cell Research Unit, Center of Excellence in Genomic Medicine ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Faculty of MedicineAIMST UniversitySemeling, BedongMalaysia

Personalised recommendations