Fungi Associated with Plants and Lichens of Antarctica

  • Camila Rodrigues de Carvalho
  • Iara Furtado Santiago
  • Lívia da Costa Coelho
  • Paulo Eduardo Aguiar Saraiva Câmara
  • Micheline Carvalho Silva
  • Michael Stech
  • Carlos Augusto Rosa
  • Luiz Henrique Rosa


The Antarctic microbial community is an important component of the ecosystem in Antarctica. Fungi are among the major Antarctic microorganisms, and several taxa have already been isolated from various substrates including vascular plants, bryophytes, and lichens. Compared with tropical and temperate ecosystems, the diversity of vascular plants in Antarctica is relatively low, such that basal plants, lichens and only two native angiosperms, Colobanthus quitensis (Caryophyllaceae) and Deschampsia antarctica (Poaceae), are dominant. Considering the extreme conditions in Antarctica, angiosperms, bryophytes and lichens, which have adapted to these conditions, represent hotspot microhabitats for fungal diversity. The fungal assemblages associated with these organisms include various taxa categorised as cosmopolitan cold-adapted and endemic species. In the present chapter, we focus on the richness, diversity, and ecology of cryptic fungal assemblages associated with bryophytes, vascular plants and lichens of Antarctica.


Antarctic fungi Bryophytes Vascular plants and lichen 


  1. Alberdi M, Bravo LA, Gutierrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ando H, Matsuo A (1984) Applied bryology. In: Schutze-Motel W (ed) Advances in Bryology 2. J. Cramer, Lehre, pp 133–230Google Scholar
  3. Azmi OR, Seppelt RD (1998) The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100CrossRefGoogle Scholar
  4. Bacon CW, White JF (2000) Biology and evolution of microbial endophytes. Dekker, New YorkGoogle Scholar
  5. Baublis JA, Wharton RA, Volz PA (1991) Diversity of microfungi in an Antarctic Dry Valley. J Basic Microbiol 31:3–12Google Scholar
  6. Bednarek-Ochyra H, Ochyra R, Váňa J, Smith RIL (2000) The Liverwort Flora of Antarctica. Cracow: W Szafer Institute of Botany, Polish Academy of SciencesGoogle Scholar
  7. Biersma EM, Jackson JA, Hyvönen J, Koskinen S, Linse K, Griffiths H, Convey P (2017) Global biogeographic patterns in bipolar moss species. R Soc Open Sci 4:170147PubMedPubMedCentralCrossRefGoogle Scholar
  8. Biersma EM, Jackson JA, Bracegirdle TJ, Griffiths H, Linse K, Convey P (2018a) Low genetic variation between South American and Antarctic populations of the bank-forming moss Chorisodontium aciphyllum (Dicranaceae). Polar Biol 41:599–610CrossRefGoogle Scholar
  9. Biersma EM, Jackson JA, Stech M, Griffiths H, Linse K, Convey P (2018b) Molecular data suggest long-term in situ Antarctic persistence within Antartica’s moss speciose plant genus, Schistidium. Ecol Evol 6:1–11Google Scholar
  10. Bradner JR, Sidhu RK, Yee B, Skotnicki ML, Selkirk PM, Nevalainen KMH (2000) A new microfungi isolate, Embellisia sp., associated with the Antartic moss Bryum argenteum. Polar Biol 23:730–732CrossRefGoogle Scholar
  11. Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196PubMedCrossRefGoogle Scholar
  12. Bravo LA, Ulloa N, Zuñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65CrossRefGoogle Scholar
  13. Bridge PD, Worland MR (2008) An association between the Antarctic mite Alaskozetes antarcticus and an entomophthoralean fungus of the genus Neozygites. Exp Appl Acarol 46:43–52PubMedCrossRefGoogle Scholar
  14. Buck WR, Goffinet B (2000) Morphology and classification of mosses. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. University Press Cambridge, Cambridge, pp 71–123CrossRefGoogle Scholar
  15. Câmara PEAS, Silva BGC, Carvalho-Silva M, Henriques DK (2017) The moss flora of Ostov Geologov (Geologists Island), Maxwell Bay, King George Island, Antarctica. Bol Soc Argent Bot 52:251–255CrossRefGoogle Scholar
  16. Câmara PEAS, Carvalho-Silva M, Henriques DK, Guerra J, Gallego MT, Poveda DR, Stech M (2018) Pylaisiaceae Schimp. (Bryophyta) revisited. J Bryol 40:251–264CrossRefGoogle Scholar
  17. Câmara PEAS, Soares AER, Henriques DK, Peralta DF, Bordin J, Carvalho-Silva M (2019) Revisiting Bartramia Hedw. (Bryophyta) in Antarctica. Antarctic Science. In reviewGoogle Scholar
  18. Cao S, Peng F, Zheng H, Wang F, Liu C, Zhou Q (2017) Patterns of fungal–algal symbiont association in Usnea aurantiaco-atra reveal the succession of lichen–moss communities in Fildes Peninsula, Antarctica. Polar Res 36:1–7CrossRefGoogle Scholar
  19. Chwedorzewska K (2009) Terrestrial Antarctic ecosystems in the changing world: an overview. Pol Polar Res 30:263–276CrossRefGoogle Scholar
  20. Convey P, Lewis Smith RI, Hodgson DA, Peat HJ (2000) The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. J Biogeogr 27:1279–1295CrossRefGoogle Scholar
  21. Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, Consortium A (2009) Antarctic climate change and the environment. Sustain Sci 3:9–22Google Scholar
  22. Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, McMinn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244CrossRefGoogle Scholar
  23. Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Can J Bot 84:1509–1519CrossRefGoogle Scholar
  24. Del Frante GD, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7CrossRefGoogle Scholar
  25. Domaschke S, Fernández-Mendoza F, García MA, Martín MP, Printzen C (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Res 31:1CrossRefGoogle Scholar
  26. Duarte AWF, Passarini MRZ, Delforno TP, Pellizzari FM, Cipro CVZ, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environ Microbiol Rep 8:874–885PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280CrossRefGoogle Scholar
  28. Fenton JHC (1983) Concentric fungal rings in Antarctic moss communities. Trans Br Mycol Soc 80:415–420CrossRefGoogle Scholar
  29. Fernandes RF, Spielmann AA, Oliveira LFC (2014) Raman spectroscopy as a tool to the in situ study of three lichens species from Antarctica and Brazil. J Raman Spectrosc 46:70–75CrossRefGoogle Scholar
  30. Fernández EG, Serrano AMV (2009) Atividade biológica das Briófitas. Âmbito Cultural Edições Edições Ltda., p 190Google Scholar
  31. Ferreira SEM, Sousa FMP, Rosa LH, Pimenta RS (2018) Taxonomy and richness of yeasts associated with angiosperms, bryophytes, and meltwater biofilms collected in the Antarctic Peninsula. Extremophiles 23:151–159PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of Mac.Robertson and Enderby Lands, Antarctica. Polar Biol 4:81–88CrossRefGoogle Scholar
  33. Frey W, Stech M (2009) Marchantiophyta, Bryophyta, Anthocerotophyta. In: Frey W (ed) Syllabus of plant families. A. Engler’s Syllabus der Pflanzenfamilien, 13th ed., part 3 bryophytes and seedless vascular plants. Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, pp 13–263Google Scholar
  34. Furbino LE (2017) Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biol 41:527–535CrossRefGoogle Scholar
  35. Gamundi IJ, Spinedi HA (1988) New species and interesting collections from Danco Coast, Antarctic Peninsula. Mycotaxon 33:467–498Google Scholar
  36. González AB, Delgado-Baquerizo M, Fernández-Brun L, Singh BK, Maestre FT, Sancho LG (2018) Identity of plant, lichen and moss species connects with microbial abundance and soil functioning in maritime Antarctica. Plant Soil 429:35–52CrossRefGoogle Scholar
  37. Hedenas L (2012) Global phylogeography in Sanionia uncinata (Amblystegiaceae: Bryophyta). Botl J Linn Soc 168:19–42CrossRefGoogle Scholar
  38. Henriques DK, Silva BGC, Zuñiga GE, Câmara PEAS (2018) Contributions to the bryological knowledge of ASPA 125, Fildes Peninsula, King George Island. Bio Res 51:1–7CrossRefGoogle Scholar
  39. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenetics Evol 42:543–555CrossRefGoogle Scholar
  40. Hirose D, Hobara S, Matsuoka S, Kato K, Tanabe Y, Uchida M, Kudoh S, Osono T (2016) Diversity and community assembly of moss-associated fungi in ice-free coastal outcrops of continental Antarctica. Fungal Ecol 24:94–101CrossRefGoogle Scholar
  41. Hooker JD (1844) The botany of the Antarctic voyage of H.M. discovery ships Erebus and Terror in the years 1839–1843, under the Command Captain Sir James Clark Ross. London: Reeve Brothers, King Willian Street, StrandGoogle Scholar
  42. Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kellmann-Sopyła W, Giełwanowska I (2015) Germination capacity of five polar Caryophyllaceae and Poaceae species under different temperature conditions. Polar Biol 38:1753–1765CrossRefGoogle Scholar
  44. Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfoid Hills and MacRobertson Land, Antarctica. Polar Biol 10:423–430Google Scholar
  45. Lindo Z, Gonzalez A (2010) The Bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–627CrossRefGoogle Scholar
  46. Longton RE (1988) The biology of polar bryophytes and lichens. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  47. Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, Alcami A (2009) High diversity of the viral community from an Antarctic Lake. Science 326:858–861PubMedCrossRefPubMedCentralGoogle Scholar
  48. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  49. McRae CF, Seppelt RD (1999) Filamentous fungi of the Windmill Islands, continental Antarctica. Effect of water content in moss turves on fungal diversity. Polar Biol 22:389–394CrossRefGoogle Scholar
  50. McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111CrossRefGoogle Scholar
  51. Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SCN, Pellizari VH (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23CrossRefGoogle Scholar
  52. Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933CrossRefGoogle Scholar
  53. Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  54. Onofri S, Tosi S (1989) II contributo della micologia alla IV spedizione italiana in Antartide. Micol Veget Mediterr 4:57–62Google Scholar
  55. Pavlova K, Grigorova D, Hristozova T, Angelo A (2001) Yeast strains from Livingston Island, Antarctica. Folia Microbiol 46:397–401CrossRefGoogle Scholar
  56. Pawłowska J, Istel Ł, Gorczak M, Galera H, Wrzosek M, Hawksworth DL (2017) Psychronectria hyperantarctica, gen. nov., comb. nov., epitypification and phylogenetic position of an Antarctic bryophilous ascomycete. Mycologia 109:1–7CrossRefGoogle Scholar
  57. Peat HJ, Clarke A, Convey P (2007) Diversity and biogeography of the Antarctic flora. J Biogeogr 34:132–146CrossRefGoogle Scholar
  58. Pereira AB, Spielmann AA, Martins MFN, Francelino MR (2007) Plant communities from ice-free areas of Keller Peninsula, King George Island, Antarctica. Oecol Bras 11:14–22CrossRefGoogle Scholar
  59. Poelking EL, Schaefer CER, Fernandes Filho EI, Andrade AM, Spielmann AA (2014) Soil-landform-plant-communities relationships of a periglacial landscape at Potter Peninsula, Maritime Antarctica. Solid Earth Discuss 6:2261–2292CrossRefGoogle Scholar
  60. Pugh GJF, Allosopp D (1982) Microfungi on Signy Island, South Orkney Islands. Br Antarct Surv Bull 57:55–67Google Scholar
  61. Rodriguez RJ, Henson J, Volkenburgh EV, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefGoogle Scholar
  62. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167CrossRefGoogle Scholar
  63. Rosa LH, Vieira MLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189Google Scholar
  64. Ruhland CT, Krna MA (2010) Effects of salinity and temperature on Deschampsia antarctica. Polar Biol 33:1007–1012CrossRefGoogle Scholar
  65. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica reviews. In: Amils R, Ellis-Evans C, Hinghofer-Szalkay H (ed) Life in Extreme Environments. Springer, Dordrecht, pp 161–175Google Scholar
  66. Santiago IF, Alves TM, Rabello A, Junior PAS, Romanha AJ, Zani CL, Rosa CA, Rosa LH (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103CrossRefGoogle Scholar
  67. Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097CrossRefGoogle Scholar
  68. Santiago IF, Rosa CA, Rosa LH (2017) Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biol 40:177–183CrossRefGoogle Scholar
  69. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686PubMedCrossRefGoogle Scholar
  70. Schulz B, Haas S, Junker C, Andre N, Schobert M (2015) Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci 109:39–45Google Scholar
  71. Selbmann L, Grube M, Onofri S, Isola D, Zucconi L (2013) Antarctic epilithic lichens as niches for black Meristematic fungi. Biology 2:784–797PubMedPubMedCentralCrossRefGoogle Scholar
  72. Skotnicki ML, Mackenzie AM, Clements MA, Selkirk PM (2005) DNA sequencing and genetic diversity of the 18S–26S nuclear ribosomal internal transcribed spacers (ITS) in nine Antarctic moss species. Antarct Sci 17:377–384CrossRefGoogle Scholar
  73. Snider CS, Hsiang T, Zhao G, Griffith M (2000) Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds. Phytopathology 90:354–361PubMedCrossRefPubMedCentralGoogle Scholar
  74. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544PubMedCrossRefPubMedCentralGoogle Scholar
  75. Tojo M, West PV, Hoshino T, Kida K, Fujii H, Hakoda A, Kawaguchi Y, Mühlhauser HA, Van De Berg AH, Küpper FC, Herrero ML, Klemsdal SS, Tronsmo AM, Kanda H (2012) Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctic. Fungal Biol 116:756–768PubMedCrossRefPubMedCentralGoogle Scholar
  76. Tosi S, Begonã A, Ae C, Gerdol R, Caretta G (2002a) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268Google Scholar
  77. Tosi S, Casado B, Gerdol R, Caretta G (2002b) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268Google Scholar
  78. Upson R, Newsham KK, Bridge PD, Pearce DA, Read DJ, Crittenden P (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196CrossRefGoogle Scholar
  79. Victoria FC, Albuquerque MP, Pereira AB, Simas FNB, Spielmann AA, Schaefer CEGR (2013) Characterization and mapping of plant communities at Hennequin Point, King George Island, Antarctica. Polar Res 32:1CrossRefGoogle Scholar
  80. Welch WH (1948) Mosses and their uses. Proc Indiana Acad Sci 58:31–46Google Scholar
  81. Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. In: Marshall KC (ed) Advances in microbial ecology. Springer US, Boston, pp 71–146CrossRefGoogle Scholar
  82. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451PubMedPubMedCentralCrossRefGoogle Scholar
  83. Yu NH, Kim JA, Jeong MH, Cheong YH, Hong SG, Jung JS, Koh YJ, Hur JS (2014) Diversity of endophytic fungi associated with bryophyte in the maritime Antarctic (King George Island). Polar Biol 37:27–36CrossRefGoogle Scholar
  84. Zhang T, Xiang HB, Zhang YQ, Liu HY, Wei YZ, Zhao LX, Yu LY (2013a) Molecular analysis of fungal diversity associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica. Extremophiles 17:757–765PubMedCrossRefGoogle Scholar
  85. Zhang T, Zhang YQ, Liu HY, Wei YZ, Li HL, Su J, Zhao LX, Yu LY (2013b) Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica. FEMS Microbiol Lett 341:52–61PubMedCrossRefGoogle Scholar
  86. Zhang T, Zhang YQ, Liu HY, Su J, Zhao LX, Yu LY (2014) Cryptococcus fildesensis sp. nov., a psychrophilic basidiomycetous yeast isolated from Antarctic moss. Int J Syst Evol Microbiol 64:675–679PubMedCrossRefGoogle Scholar
  87. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Camila Rodrigues de Carvalho
    • 1
  • Iara Furtado Santiago
    • 1
  • Lívia da Costa Coelho
    • 1
  • Paulo Eduardo Aguiar Saraiva Câmara
    • 2
  • Micheline Carvalho Silva
    • 3
  • Michael Stech
    • 4
    • 5
  • Carlos Augusto Rosa
    • 1
  • Luiz Henrique Rosa
    • 1
  1. 1.Departamento de MicrobiologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de BotânicaUniversidade de BrasíliaDistrito FederalBrazil
  3. 3.Instituto de Ciências AgráriasUniversidade Federal dos Vales do Jequitinhonha e MucuriUnaíBrazil
  4. 4.Naturalis Biodiversity CenterLeidenThe Netherlands
  5. 5.Leiden UniversityLeidenThe Netherlands

Personalised recommendations