Advertisement

Diversity and Ecology of Fungal Assemblages Present in Lakes of Antarctica

  • Mayara Baptistucci Ogaki
  • Rosemary Vieira
  • Juan Manuel Lírio
  • Carlos Augusto Rosa
  • Luiz Henrique Rosa
Chapter

Abstract

The biota of Antarctica lakes is constituted by simplified aquatic food webs characterised by low zooplankton biomass, absence of fish, and low floristic diversity (algae and aquatic mosses), but primarily encompassing microorganisms such as viruses, cyanobacteria, bacteria, archaea, and fungi. Among the microbial communities, fungi are widely spread in the different Antarctic lakes and, despite the extreme conditions of the region, show moderate diversity and richness with dominance of a few taxa. Endemic fungal species are found in the Antarctic lakes; however, the majority of fungi are characterised as cosmopolitan cold-adapted species that arrive as propagules from outside Antarctica and are adapted to disperse in the temporary or perennial water bodies, including saline and freshwater lakes. These fungi are subjected to freezing and melting cycles, low temperatures, and high incidence of UV radiation, mainly during the long periods of light in Austral summers. In contrast, in Austral winters, fungi are exposed to extreme freezing conditions. Additionally, in the lakes of Antarctica, fungi act as decomposers and interact with other organisms, such as parasites, or are in symbiotic associations, which consequently influence the lake food web dynamics. In Antarctica, cold-adapted cosmopolitan and psychrophilic fungi have the ability to grow, colonise substrates, and produce extracellular cold-active enzymes and other metabolites, which actively participate in the cycling of nutrients in lakes. In this chapter, we present the characteristics of different Antarctic lakes and shed light on various aspects of taxonomy, ecology, and potential applications of freshwater fungi from maritime and continental Antarctica.

Keywords

Antarctica Ecology Extremophiles Lagoons Lakes Ponds 

References

  1. Abram NJ, Mulvaney R, Wolff EW, Triest J, Kipfstuhl S, Trusel LD, Vimeux F, Fleet L, Arrowsmith C (2013) Acceleration of snowmelt in an Antarctic Peninsula ice core during the twentieth century. Nat Geosci 6:404–411CrossRefGoogle Scholar
  2. Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology 67:451Google Scholar
  3. Alfonso JA, Vasquez Y, Hernandez AC, Mora A, Handt H, Sira E (2015) Geochemistry of recent lacustrine sediments from Fildes Peninsula, King George Island, maritime Antarctica. Antarct Sci 27:462–471CrossRefGoogle Scholar
  4. Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064CrossRefGoogle Scholar
  5. Baublis JA, Wharton RA, Volz PA (1991) Diversity of micro-fungi in an Antarctic dry valley. J Basic Microbiol 31:3–12CrossRefGoogle Scholar
  6. Bird MI, Chivas AR, Radnell CJ, Burton HR (1991) Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 84:109–130CrossRefGoogle Scholar
  7. Bishop JL, Koeberl C, Kralik C, Froeschl H, Englert PAJ, Andersen DW, Pieters CM, Wharton RA (1996) Reflectance spectroscopy and geochemical analyses of Lake Hoare sediments, Antarctica. Geochim Cosmochim Acta 60:765–785PubMedCrossRefGoogle Scholar
  8. Bishop JL, Englert PAJ, Patel S, Tirsch D, Roy AJ, Koeberl C, Böttger U, Hanke F, Jaumann R (2014) Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances. Philos Trans R Soc, Ser A 372:20140198CrossRefGoogle Scholar
  9. Bridge PD, Spooner BM, Roberts PJ (2008) Non-lichenized fungi from the Antarctic region. Mycotaxon 106:485–490Google Scholar
  10. Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich de Hoog S, Genilloud OE, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50CrossRefGoogle Scholar
  11. Bulat SA (2016) Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Philos Trans R Soc, Ser A 374:20140292CrossRefGoogle Scholar
  12. Camacho A (2006) Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the Maritime Antarctica and Sub-antarctic Islands. Rev Environ Sci Biotechnol 5:167–185CrossRefGoogle Scholar
  13. Camacho A, Rochera C, Villaescusa JA, Velázquez D, Toro M, Rico E, Fernandez-Valiente E, Justel A, Bañon M, Quesada A (2012) Maritime Antarctic lakes as sentinels of climate change. Int J Des Nat Ecodyn 7:239–250CrossRefGoogle Scholar
  14. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577PubMedCrossRefGoogle Scholar
  15. Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501CrossRefGoogle Scholar
  16. Connell L, Segee B, Redman R, Rodriguez RJ, Staudige H (2018) Biodiversity and abundance of cultured microfungi from the permanently ice-covered Lake Fryxell, Antarctica. Life 8:1–10CrossRefGoogle Scholar
  17. D’Ellia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763CrossRefGoogle Scholar
  18. Dix NJ, Webster J (1995) Aquatic Fungi. In: Dix NJ, Webster J (eds) Fungal Ecology. Chapman & Hall, London, pp 225–283CrossRefGoogle Scholar
  19. Doran PT, McKay CP, Meyeri MA, Andersen DT, Wharton RA Jr, Hastings JT (1996) Climatology and implications for perennial lake ice occurrence at Bunger Hills Oasis, East Antarctica. Antarct Sci 8:289–296CrossRefGoogle Scholar
  20. Doran PT, Wharton RA Jr, Lyons WB, Des Marais DJ, Andersen DT (2000) Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica. Antarct Sci 12:131–140PubMedCrossRefGoogle Scholar
  21. Ellis-Evans JC (1981) Freshwater microbiology at Signy Island, South Orkney Islands Antarctica PhD dissertation, CNAA, 283ppGoogle Scholar
  22. Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environmentsBr. Brit Antartic Surv B 68:37–45Google Scholar
  23. Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431CrossRefGoogle Scholar
  24. Ellis-Evans J, Walton D (1990) The process of colonization in Antarctic terrestrial and freshwater ecosystems. Polar Biol 3:151–163Google Scholar
  25. Gonçalves VN, Vaz AB, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471CrossRefGoogle Scholar
  26. Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TM, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152CrossRefGoogle Scholar
  27. Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeast. Mycologia 61:748–774PubMedCrossRefGoogle Scholar
  28. Green WJ, Canfield DE (1984) Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochim Cosmochim Acta 48:2457–2467CrossRefGoogle Scholar
  29. Green WJ, Lyons WB (2009) The saline lakes of the McMurdo Dry Valleys Antarctica. Aquatic Geochem 15:321–348CrossRefGoogle Scholar
  30. Hall BL, Denton GH, Fountain AG, Hendy CH, Henderson GM (2010) Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation. Proc Natl Acad Sci 107:21355–21359PubMedCrossRefGoogle Scholar
  31. Hao Y, Mo M, Su H, Zhang K (2005) Ecology of aquatic nematode-trapping Hyphomycetes in southwestern China. Aquat Microb Ecol 40:175–181CrossRefGoogle Scholar
  32. Hodgson DA (2012) Antarctic Lakes. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, Dordrecht/London, pp 26–30Google Scholar
  33. Hodgson DA, Doran PT, Roberts D, McMinn A (2004) Paleolimnological studies from the Antarctic and Subantarctic Islands. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes. Springer, Dordrecht - London, pp 419–474CrossRefGoogle Scholar
  34. de Hoog GS, Göttlich E, Platas G, Genilloudm O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76Google Scholar
  35. Izaguirre I, Allende L, Tell G (2006) Algal communities of a geothermally heated lagoon on Deception Island (South Shetland Islands). Polar Biol 29:364–371CrossRefGoogle Scholar
  36. Izaguirre I, Pizarro H, Allende L, Unrein F, Rodríguez P, Marinone MC, Tell G (2012) Responses of a Maritime Antarctic lake to a catastrophic draining event under a climate change scenario. Polar Biol 35:231–239CrossRefGoogle Scholar
  37. Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147PubMedCrossRefGoogle Scholar
  38. Knox JS, Peterson RA (1973) The occurrence and distribution of some aquatic Phycomycetes on Ross Island and the Dry Valleys of Victoria Land, Antarctica. Mycologia 65:373–387CrossRefGoogle Scholar
  39. Kobayashi Y, Hiratsuka N, Korf RP, Tubaki K, Aoshima K, Soneda M, Sugiyama J (1967) Mycological studies of the Alaskan Arctic. Annu Rep Inst Ferment, Osaka 3:1–138Google Scholar
  40. Kriss AE, Mitskevich IN, Rozanova EP, Osnitskaya LK (1976) Microbiological investigations of Lake Vanda (Antarctica). Microbiology 45:917–922Google Scholar
  41. Kuehn KA (2015) Lentic and lotic habitats as templets for fungal communities: traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. Fungal Ecol 19:135–154CrossRefGoogle Scholar
  42. Kuhn G, Hillenbrand CD, Kasten S, Smith JA, Nitsche FO, Frederichs T, Wiers S, Ehrmann W, Klages JP, Mogollón JM (2017) Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nat Commun 8:15591PubMedPubMedCentralCrossRefGoogle Scholar
  43. Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc Lond, Ser B 362:2273–2289CrossRefGoogle Scholar
  44. Laybourn-Parry J, Wadham JL (2014) Antarctic Lakes. Oxford University Press, Oxford, pp 1–40CrossRefGoogle Scholar
  45. Laybourn-Parry J, James MR, McKnight DM, Priscu J, Spaulding SA, Shiel R (1997) The microbial plankton of Lake Fryxell, Southern Victoria Land, Antarctica during the summers of 1992 and 1994. Polar Biol 17:54–61CrossRefGoogle Scholar
  46. Lukin V, Vasiliev N (2014) Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok Subglacial Lake East Antarctica. Ann Glaciol 55:83–89CrossRefGoogle Scholar
  47. Matsumoto GL (1993) Geochemical features of the McMurdo Dry Valley lakes, Antarctica. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctica lakes, Antarctic research series, vol 59. American Geophysical Union, Washington, pp 95–118CrossRefGoogle Scholar
  48. McInnes SJ (2003) A predatory fungus (Hyphomycetes: Lecophagus) attacking Rotifera and Tardigrada in maritime Antarctic lakes. Polar Biol 26:79–82Google Scholar
  49. McKay CP, Clow GD, Wharton RA Jr, Squyres SW (1985) Thickness of ice in perennially frozen lakes. Nature 313:561–562PubMedCrossRefGoogle Scholar
  50. McKay RM, Browne G, Carter L, Cowan E, Dunbar G, Krissek L, Naish T, Powell R, Reed J, Talarico F, Wilch T (2009) The stratigraphic signature of the late Cenozoic Antarctic Ice Sheets in the Ross Embayment. Geol Soc Am Bull 121:1537–1561CrossRefGoogle Scholar
  51. Michel RFM, Schaefer CEGR, Martínez JL, Simas FNB, Haus NW, Serrano E, Bockheim JG (2014) Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica. Geomorphology 225:76–86CrossRefGoogle Scholar
  52. Monchy S, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabé M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13:1433–1453PubMedCrossRefGoogle Scholar
  53. Nagashima H, Nishikawa J, Matsumoto GI, Izuka H (1990) Characterization and habitats of bacteria and yeasts isolated from Lake Vanda in Antarctica. Proc NIPR Symp Polar Biol 3:190–200Google Scholar
  54. Oliva M, Hrbacek F, Ruiz-Fernández J, Pablo MA, Vieira G, Ramos M, Antoniades D (2017) Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena 149:548–559CrossRefGoogle Scholar
  55. Peter HU, Buesser C, Mustafa O, Pfeiffer S (2008) Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as specially protected or specially managed areas. German Environ Agency Res Rep 203:124. 508pGoogle Scholar
  56. Phartiyal B, Sharma A, Bera SK (2011) Glacial lakes and geomorphological evolution of Schirmacher Oasis, East Antarctica during Late Quaternary. Quat Int 235:128–136CrossRefGoogle Scholar
  57. Pienitz R, Doran PT, Lamoureux SF (2008) Origin and geomorphology of lakes in the polar regions. In: Vicent WF, Laybourn-Parry J (eds) Polar Lakes and Rivers. Oxford University Press, Oxford, pp 25–41CrossRefGoogle Scholar
  58. Priddle J, Heywood RB (1980) Evolution of Antarctic lake ecosystems. Biol J Linn Soc 14(5):1–66Google Scholar
  59. Priscu JC, Foreman CM (2009) Lakes of Antarctic. In: Likens GE (ed) Encyclopedia of inland waters, vol 2. Elsevier Press, Oxford, pp 555–566CrossRefGoogle Scholar
  60. Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144PubMedCrossRefGoogle Scholar
  61. Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645PubMedCrossRefGoogle Scholar
  62. Quesada A, Vincent WF, Kaupp E, Hobbie JE, Laurion I, Pienitz R, López-Martínez J, Durán JJ (2006) Landscape control of high latitude lakes in changing climate. In: Bergström DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Antarctica as a global indicator. Springer, Dordrecht, pp 221–252CrossRefGoogle Scholar
  63. Ravin NV, Mardanov AV, Skryabin KG (2015) Metagenomics as a tool for the investigation of uncultured microorganisms. Russ J Genet 51:431CrossRefGoogle Scholar
  64. Robin Gde Q, Drewry DJ, Meldrum T (1977) International studies of ice sheet and bedrock. Philos Trans R Soc Ser A 279:185–196CrossRefGoogle Scholar
  65. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353CrossRefGoogle Scholar
  66. Robinson CT, Gessner MO, Callies Ka Jolidon C, Ward JV (2000) Larch needle breakdown in contrasting streams of an alpine glacial floodplain. J N Am Benthol Soc 19:250–262CrossRefGoogle Scholar
  67. Rogers SO, Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni R, D’Elia T (2013) Ecology of subglacial Lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice. Biology (Basel) 2:629–650Google Scholar
  68. Rojas-Jimenez K, Wurzbacher C, Bourne E, Chiuchiolo A, Priscu JC, Grossart HP (2017) Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Sci Rep 7:15348PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv (Poaceae). Polar Biol 32:161–167CrossRefGoogle Scholar
  70. Semenova TA, Morgado LN, Welker JM, Walker MD, Smets E, Geml J (2015) Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra. Mol Ecol 24:424–437PubMedCrossRefGoogle Scholar
  71. Shearer CA, Descals E, Volkmann-Kohlmeyer B, Kohlmeyer J, Marvanova L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67CrossRefGoogle Scholar
  72. Sheraton JW, Tingeyi RJ, Black LP, Oliverz RL (1993) Geology of the Bunger Hills area, Antarctica: implications for Gondwana correlations. Antarct Sci 5:85–102CrossRefGoogle Scholar
  73. Shevnina E, Kourzeneva E (2017) Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus A 69:1317202CrossRefGoogle Scholar
  74. Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni RS, D’Elia T, Morris PF, Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting Bacteria and Eukarya. PLoS One 8:e67221PubMedPubMedCentralCrossRefGoogle Scholar
  75. Siegert JM, Ellis-Evans JC, Tranter M, Mayer C, Petit J, Salamatink A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609PubMedCrossRefGoogle Scholar
  76. Simmons GM, Vestal JR, Wharton RA (1992) Environmental regulators of microbial activity in continental antarctic lakes. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctica Lakes, Antarctic Research Series, vol 59. American Geophysical Union, Washington, pp 165–195CrossRefGoogle Scholar
  77. Sokratova IN (2011) Hydrological investigations in the Antarctic oases. Russ Meteorol Hydrol 36:207–215CrossRefGoogle Scholar
  78. Stanley SO, Rose AH (1967) Bacteria and yeasts from lakes on Deception Island. Philos Trans R Soc, Ser A 252:199–207CrossRefGoogle Scholar
  79. Stüwe K, Braun H, Peer H (1989) Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Aust J Earth Sci 36:219–241CrossRefGoogle Scholar
  80. Sugiyama J (1970) World’s last frontier 111: polar mycology in Antarctica. Polar News 6:17–24Google Scholar
  81. Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernández-Valiente E, Quesada A (2006) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime, Antarctica. Polar Biol 30:635–649CrossRefGoogle Scholar
  82. Townsend CR, Hildrew AG (1994) Species traits in relation to a habitat templet for river systems. Freshwat Biol 31:265–275CrossRefGoogle Scholar
  83. Tranter M, Fountain AG, Fritsen CH, Berry Lyons W, Priscu JC, Statham PJ, Welch KA (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Proc 18:379–387CrossRefGoogle Scholar
  84. Tregoning GS, Kempher ML, Jung DO, Samarkin VA, Joye SB, Madigan MT (2015) A halophilic bacterium inhabiting the warm CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys Antarctica. Appl Environ Microbiol 81:1988–1995PubMedPubMedCentralCrossRefGoogle Scholar
  85. Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. Royal Soc Open Sci 31:60106Google Scholar
  86. Tsuji M, Fujiu S, Xiao N, Hanada Y, Kudoh S, Kondo H, Tsuda S, Hoshino T (2013) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol Lett 346:121–130PubMedCrossRefGoogle Scholar
  87. Vaz AB, Rosa LH, Vieira ML, Garcia VD, Brandão LR, Teixeira LC, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazilian J Microbiol 42:937–947CrossRefGoogle Scholar
  88. Vicent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction to the limnology of high-latitude lake and river ecosystems. In: Vicent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 1–24CrossRefGoogle Scholar
  89. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385CrossRefGoogle Scholar
  90. Vocke RD, Hanson GN (1981) U-Pb zircon ages and petrogenetic implications for two basement units from Victoria Valley, Antarctica. In: Mcginnis LD (ed) Dry Valley drilling project vol 33. American Geophysical Union, Washington DC, pp 248–255Google Scholar
  91. Waguri O (1976) Isolation of microorganisms from salt lakes in the Dry Valley, Antarctica, and their living environment. Antarct Rec 57:80–96Google Scholar
  92. Waguri O, Kawamura Y, Tubaki K (1975) Isolation of microorganisms. In: Mudrey MG Jr, McGinnis LD (eds) Dry Valley drilling project, bulletin no 5. Northern Illinois University, De Kalb, pp 111–117Google Scholar
  93. Wang M, Jiang X, Wu W, Hao Y, Su Y, Cai L, Xiang M, Liu X (2015a) Psychrophilic fungi from the world’s roof. Persoonia 34:100–112PubMedCrossRefGoogle Scholar
  94. Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015b) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83PubMedPubMedCentralCrossRefGoogle Scholar
  95. Willoughby LG (1971) Aquatic fungi from an Antarctic Island and a Tropical lake. Nova Hedwigia 22:469–488Google Scholar
  96. Wright W, Burton HR (1981) The biology of Antarctic saline lakes. Hydrobiologia 82:319–338CrossRefGoogle Scholar
  97. Wright A, Siegert MA (2012) A fourth inventory of Antarctic subglacial lakes. Antarct Sci 24:659–664CrossRefGoogle Scholar
  98. Wurzbacher C, Kerr J, Grossart H (2011) Aquatic Fungi. In: Grillo O, Venora G (eds) The dynamical processes of biodiversity. Intech Open, London, pp 229–261Google Scholar
  99. Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, Kovacova V, Kubátová A, Nováková A, Orlov O, Pikula J, Presetnik P, Šuba J, Zahradníková A Jr, Martínková N (2016) White nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep 6(19829):1–12Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mayara Baptistucci Ogaki
    • 1
  • Rosemary Vieira
    • 2
  • Juan Manuel Lírio
    • 3
  • Carlos Augusto Rosa
    • 1
  • Luiz Henrique Rosa
    • 1
  1. 1.Departamento de MicrobiologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de GeografiaUniversidade Federal FluminenseBrazil
  3. 3.Instituto Antártico ArgentinoBuenos AiresArgentina

Personalised recommendations