Advertisement

Quantum Computing

Large-Scale Quantum Systems Based on Superconducting Qubits
  • Albert FrischEmail author
  • Harry S. Barowski
  • Markus Brink
  • Peter Hans Roth
Chapter
  • 356 Downloads
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

Quantum computing systems with increasing numbers of quantum bits are becoming available for intermediate-scale quantum computing applications. Among several physical implementations, superconducting circuits are one of the promising base technologies, as the manufacturing and integration of Josephson-junction-based qubits has made significant advances over the last fifteen years. Full-stack system development is key for the breakthrough of quantum computing. In this chapter, we provide an overview of current superconducting qubit implementations, system performance metrics, and the open-source quantum computing software ecosystem Qiskit.

References

  1. 1.
    J. Preskill, Quantum Computing in the NISQ Era and Beyond (2018). arXiv:1801.00862
  2. 2.
  3. 3.
  4. 4.
    D. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    G. Popkin, Quest for qubits. Science 354, 1090 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8, 277 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Debnath et al., Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    T. Xia et al., Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114, 100503 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A. Omran et al., Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570 (2019)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Veldhorst et al., An addressable quantum dot qubit with faulttolerant control-fidelity. Nat. Nanotechnol. 9, 981 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    D.P. Franke et al., Rent’s rule and extensibility in quantum computing. Microprocess. Microsyst. 67, 1 (2019)CrossRefGoogle Scholar
  12. 12.
    T.F. Watson et al., A programmable two-qubit quantum processor in silicon. Nature 555, 633 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    F. Dolde et al., Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Nemoto et al., Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014)Google Scholar
  15. 15.
    Y. Wang et al., Characterizing Si:P quantum dot qubits with spin-resonance techniques. Sci. Rep. 6, 31830 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Y. He et al., A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    J.L. O’Brien, Optical quantum computing. Science 318, 1567 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 8, 285 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Fornieri et al., Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89 (2019)CrossRefGoogle Scholar
  20. 20.
    V. Mourik et al., Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    S. Nadj-Perge et al., Spin-orbit qubit in a semiconductor nanowire. Nature 468, 1084 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    N.M. Linke et al., Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. 114, 3305 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Nakamura, YuA Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 6730 (1999)CrossRefGoogle Scholar
  24. 24.
    J.E. Mooij et al., Josephson persistent-current qubit. Science 285, 5430 (1999)CrossRefGoogle Scholar
  25. 25.
    J.M. Martinis et al., Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    D. Vion et al., Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit. Fortschr. Phys. 51, 4 (2003)CrossRefGoogle Scholar
  27. 27.
    A. Wallraff et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Z.-L. Xiang et al., Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 632 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J. Koch et al., Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A.D. Córcoles et al., Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Fluxonium: single cooper-pair circuit free of charge offsets. Science 326, 5949 (2009)CrossRefGoogle Scholar
  32. 32.
    A.D. Córcoles et al., Challenges and Opportunities of Near-Term Quantum Computing Systems (2019). arXiv:1910.02894 (2019)
  33. 33.
    M. Amico, Z.H. Saleem, M. Kumph, Experimental study of Shor’s factoring algorithm using the IBM Q Experience. Phys. Rev. A 100, 012305 (2019)ADSCrossRefGoogle Scholar
  34. 34.
    F. Arute et al., Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    E. Pednault et al., Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits (2019). arXiv:1910.09534
  36. 36.
    J.M. Gambetta, J.M. Chow, M. Steffen, Building logical qubits in a superconducting quantum computing system. npj Quant. Inf. 3, 2 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    N. Ofek et al., Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    L.M.K. Vandersypen et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    L.M.K. Vandersypen et al., Implementation of a three-quantum-bit search algorithm. Appl. Phys. Lett. 76, 646 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    A.W. Cross et al., Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019)ADSCrossRefGoogle Scholar
  41. 41.
    E. Onorati, A.H. Werner, J. Eisert, Randomized benchmarking for individual quantum gates. Phys. Rev. Lett. 123, 060501 (2019)ADSCrossRefGoogle Scholar
  42. 42.
    K.X. Wei et al., Verifying Multipartite Entangled GHZ States via Multiple Quantum Coherences (2019). arXiv:1905.05720
  43. 43.
    D.C. McKay et al., Three qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019)ADSCrossRefGoogle Scholar
  44. 44.
    E. Magesan et al., Efficient measurement of quantum gate error by interleaved randomized benchmarking. Phys. Rev. Lett. 109, 080505 (2012)ADSzbMATHCrossRefGoogle Scholar
  45. 45.
  46. 46.
    J.R. Johansson, P.D. Nation, F. Nori, QuTiP: an opensource Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    M.F. Gely, G.A. Steele, QuCAT: Quantum Circuit Analyzer Tool in Python (2019). arXiv:1908.10342
  48. 48.
    P. Krantz et al., A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)ADSCrossRefGoogle Scholar
  49. 49.
    R. LaRose, Overview and comparison of gate level quantum software platforms. Quantum 3, 130 (2019)CrossRefGoogle Scholar
  50. 50.
  51. 51.
    D.C. McKay et al., Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments (2018). arXiv:1809.03452
  52. 52.
    A.W. Cross et al., Open Quantum Assembly Language (2017). arXiv:1707.03429
  53. 53.
    A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
  55. 55.
  56. 56.
  57. 57.
    A. Asfaw et al., Learn Quantum Computation Using Qiskit (2019). https://community.qiskit.org/textbook
  58. 58.
    A.J. McCaskey et al., Quantum chemistry as a benchmark for near-term quantum computers. npj Quant. Inf. 5, 99 (2019)ADSCrossRefGoogle Scholar
  59. 59.
    A. Kandala et al., Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Albert Frisch
    • 1
    Email author
  • Harry S. Barowski
    • 1
  • Markus Brink
    • 2
  • Peter Hans Roth
    • 1
  1. 1.IBM Germany Research and DevelopmentBöblingenGermany
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations