Advertisement

Sleep and Dreams

  • Theocharis Kyziridis
  • Ioannis Nimatoudis
Chapter

Abstract

Sleep is not a passive state but a reversible, active state, essential for mental and physical well-being, with behavioral and physiologic characteristics that differentiate it from wakefulness. It seems to be important for the survival of animals; thus it is universally present in the animal kingdom.

Humans spend approximately one third of their lives sleeping. Sleep patterns and sleep requirements change across life-span following an order that depends upon maturation of the central nervous system. It serves important functions including information processing, energy homeostasis, thermoregulation, and hormonal regulation, as well as functions concerning immunity, emotion, reward, and memory. Sleep deprivation, on the other hand, has many negative consequences.

Sleep comprises two stages (NREM and REM), which take place approximately four to six times in one night. NREM is the stage through which initiation of sleep normally takes place. REM sleep predominates the last third of nocturnal sleep and is also known as paradoxical sleep. Anatomically, brainstem, diencephalon, and telencephalon contain regions that regulate sleep and wakefulness, while functionally this regulation is achieved by three systems: the homeostatic, the ultradian, and the circadian. Dreaming takes places in all stages of sleep, and dreams are quite stable during adulthood. Their neurobiological significance is not fully known.

Sleep disorders are categorized into two groups based on their etiology: those of primary etiology and those that have an underlying neurologic disease or mental health disorder.

Keywords

Dreaming Neurobiology NREM sleep REM sleep Sleep 

References

  1. Abel GG, Murphy WD, Becker JV, Bitar A (1979) Women's vaginal responses during REM sleep. J Sex Marital Ther 5(1):5–14.  https://doi.org/10.1080/00926237908403713 CrossRefPubMedGoogle Scholar
  2. Achermann P (2004) The two-process model of sleep regulation revisited. Aviat Space Environ Med 75(3 Suppl):A37–A43PubMedGoogle Scholar
  3. Aghajanian GK, VanderMaelen CP (1982) Alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215(4538):1394–1396.  https://doi.org/10.1126/science.6278591 CrossRefPubMedGoogle Scholar
  4. Ahnaou A, Dautzenberg FM, Geys H, Imogai H, Gibelin A, Moechars D, Steckler T, Drinkenburg WH (2009) Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture. Eur J Pharmacol 603(1–3):62–72.  https://doi.org/10.1016/j.ejphar.2008.11.018 CrossRefPubMedGoogle Scholar
  5. Alam MN, McGinty D, Szymusiak R (1995) Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep. Am J Phys 269(5 Pt 2):R1240–R1249.  https://doi.org/10.1152/ajpregu.1995.269.5.R1240 CrossRefGoogle Scholar
  6. Alam MN, Gong H, Alam T, Jaganath R, McGinty D, Szymusiak R (2002) Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J Physiol 538(Pt 2):619–631.  https://doi.org/10.1113/jphysiol.2001.012888 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Alam MN, McGinty D, Bashir T, Kumar S, Imeri L, Opp MR, Szymusiak R (2004) Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation. Eur J Neurosci 20(1):207–216.  https://doi.org/10.1111/j.1460-9568.2004.03469.x CrossRefPubMedGoogle Scholar
  8. Allen RP, Barker PB, Wehrl FW, Song HK, Earley CJ (2001) MRI measurement of brain iron in patients with restless legs syndrome. Neurology 56(2):263–265.  https://doi.org/10.1212/wnl.56.2.263 CrossRefPubMedGoogle Scholar
  9. Arrigoni E, Chamberlin NL, Saper CB, McCarley RW (2006) Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience 140(2):403–413.  https://doi.org/10.1016/j.neuroscience.2006.02.010 CrossRefPubMedGoogle Scholar
  10. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118(3062):273–274.  https://doi.org/10.1126/science.118.3062.273 CrossRefPubMedGoogle Scholar
  11. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1(8):876–886.  https://doi.org/10.1523/jneurosci.01-08-00876.1981 CrossRefPubMedGoogle Scholar
  12. Bach V, Telliez F, Chardon K, Tourneux P, Cardot V, Libert J-P (2011) Thermoregulation in wakefulness and sleep in humans. Handb Clin Neurol 98:215–227.  https://doi.org/10.1016/b978-0-444-52006-7.00014-9 CrossRefPubMedGoogle Scholar
  13. Baghdoyan HA (1997) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Phys 273(3 Pt 2):R896–R904.  https://doi.org/10.1152/ajpregu.1997.273.3.R896 CrossRefGoogle Scholar
  14. Balon R (1996) Bupropion and nightmares. Am J Psychiatry 153(4):579–580PubMedGoogle Scholar
  15. Banks S, Dorrian J, Basner M, Dinges DF (2017) Sleep deprivation. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine. Elsevier, Amsterdam, pp 49–55.  https://doi.org/10.1016/b978-0-323-24288-2.00005-2 CrossRefGoogle Scholar
  16. Bara-Jimenez W, Aksu M, Graham B, Sato S, Hallett M (2000) Periodic limb movements in sleep: state-dependent excitability of the spinal flexor reflex. Neurology 54(8):1609–1616.  https://doi.org/10.1212/wnl.54.8.1609 CrossRefPubMedGoogle Scholar
  17. Barbini B, Colombo C, Benedetti F, Campori E, Bellodi L, Smeraldi E (1998) The unipolar–bipolar dichotomy and the response to sleep deprivation. Psychiatry Res 79(1):43–50.  https://doi.org/10.1016/s0165-1781(98)00020-1 CrossRefPubMedGoogle Scholar
  18. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73(6):379–396.  https://doi.org/10.1016/j.pneurobio.2004.06.004 CrossRefPubMedGoogle Scholar
  19. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349–1354.  https://doi.org/10.1126/science.1195027 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bassetti C, Vella S, Donati F, Wielepp P, Weder B (2000) SPECT during sleepwalking. Lancet 356(9228):484–485.  https://doi.org/10.1016/S0140-6736(00)02561-7 CrossRefPubMedGoogle Scholar
  21. Bauer M, Grof P, Rasgon N, Bschor T, Glenn T, Whybrow PC (2006) Temporal relation between sleep and mood in patients with bipolar disorder. Bipolar Disord 8(2):160–167.  https://doi.org/10.1111/j.1399-5618.2006.00294.x CrossRefPubMedGoogle Scholar
  22. Benca RM, Obermeyer WH, Thisted RA, Gillin JC (1992) Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatry 49(8):651–668.; discussion 669–670.  https://doi.org/10.1001/archpsyc.1992.01820080059010 CrossRefPubMedGoogle Scholar
  23. Berger H (1930) On the electroencephalogram of man. J Psychol Neurol 40:160–179Google Scholar
  24. Berger RJ (1961) Tonus of extrinsic laryngeal muscles during sleep and dreaming. Science 134(3482):840.  https://doi.org/10.1126/science.134.3482.840 CrossRefPubMedGoogle Scholar
  25. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319(2):218–245.  https://doi.org/10.1002/cne.903190204 CrossRefPubMedGoogle Scholar
  26. Boivin DB, Czeisler CA, Dijk DJ, Duffy JF, Folkard S, Minors DS, Totterdell P, Waterhouse JM (1997) Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects. Arch Gen Psychiatry 54(2):145–152.  https://doi.org/10.1001/archpsyc.1997.01830140055010 CrossRefPubMedGoogle Scholar
  27. Borb AA, Achermann P (2016) Sleep homeostasis and models of sleep regulation. J Biol Rhythm 14(6):559–570.  https://doi.org/10.1177/074873099129000894 CrossRefGoogle Scholar
  28. Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25(2):131–143.  https://doi.org/10.1111/jsr.12371 CrossRefPubMedGoogle Scholar
  29. Born J, Rasch B, Gais S (2006) Sleep to remember. Neuroscientist 12(5):410–424.  https://doi.org/10.1177/1073858406292647 CrossRefPubMedGoogle Scholar
  30. Brandenberger G, Ehrhart J, Piquard F, Simon C (2001) Inverse coupling between ultradian oscillations in delta wave activity and heart rate variability during sleep. Clin Neurophysiol 112(6):992–996.  https://doi.org/10.1016/S1388-2457(01)00507-7 CrossRefPubMedGoogle Scholar
  31. Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120(Pt 7):1173–1197.  https://doi.org/10.1093/brain/120.7.1173 CrossRefPubMedGoogle Scholar
  32. Braun AR, Balkin TJ, Wesensten NJ, Gwadry F, Carson RE, Varga M, Baldwin P, Belenky G, Herscovitch P (1998) Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 279(5347):91–95.  https://doi.org/10.1126/science.279.5347.91 CrossRefPubMedGoogle Scholar
  33. Brown RE, Sergeeva O, Eriksson KS, Haas HL (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40(3):457–459.  https://doi.org/10.1016/s0028-3908(00)00178-7 CrossRefPubMedGoogle Scholar
  34. Brown FC, Buboltz WC Jr, Soper B (2002) Relationship of sleep hygiene awareness, sleep hygiene practices, and sleep quality in university students. Behav Med 28(1):33–38.  https://doi.org/10.1080/08964280209596396 CrossRefPubMedGoogle Scholar
  35. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92(3):1087–1187.  https://doi.org/10.1152/physrev.00032.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–385.  https://doi.org/10.1126/science.1195262 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Buysse DJ, Angst J, Gamma A, Ajdacic V, Eich D, Rossler W (2008) Prevalence, course, and comorbidity of insomnia and depression in young adults. Sleep 31(4):473–480.  https://doi.org/10.1093/sleep/31.4.473 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cai DJ, Mednick SA, Harrison EM, Kanady JC, Mednick SC (2009) REM, not incubation, improves creativity by priming associative networks. Proc Natl Acad Sci U S A 106(25):10130–10134.  https://doi.org/10.1073/pnas.0900271106 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Carskadon MA, Dement WC (2017) Normal human sleep. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine. Elsevier, Amsterdam.  https://doi.org/10.1016/b978-0-323-24288-2.00002-7 CrossRefGoogle Scholar
  40. Casement MD, Broussard JL, Mullington JM, Press DZ (2006) The contribution of sleep to improvements in working memory scanning speed: a study of prolonged sleep restriction. Biol Psychol 72(2):208–212.  https://doi.org/10.1016/j.biopsycho.2005.11.002 CrossRefPubMedGoogle Scholar
  41. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451.  https://doi.org/10.1016/s0092-8674(00)81973-x CrossRefPubMedGoogle Scholar
  42. Chokroverty S (2009) Sleep and neurodegenerative diseases. Semin Neurol 29(4):446–467.  https://doi.org/10.1055/s-0029-1237124 CrossRefPubMedGoogle Scholar
  43. Chokroverty S (2013) An overview of normal sleep. Sleep and movement disorders. Oxford University Press, Oxford.  https://doi.org/10.1093/med/9780199795161.003.0003 CrossRefGoogle Scholar
  44. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33):10691–10702.  https://doi.org/10.1523/jneurosci.23-33-10691.2003 CrossRefPubMedGoogle Scholar
  45. Chouinard S, Poulin J, Stip E, Godbout R (2004) Sleep in untreated patients with schizophrenia: a meta-analysis. Schizophr Bull 30(4):957–967.  https://doi.org/10.1093/oxfordjournals.schbul.a007145 CrossRefPubMedGoogle Scholar
  46. Cirelli C, Tononi G (2008) Is sleep essential? PLoS Biol 6(8):e216.  https://doi.org/10.1371/journal.pbio.0060216 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Colten H, Altevogt B (2006) Committee on Sleep Medicine and Research, Institute of the National Academies. Sleep disorders and sleep deprivation: an unmet public health problem. National Academies Press, Washington, DCGoogle Scholar
  48. Connor JR, Boyer PJ, Menzies SL, Dellinger B, Allen RP, Ondo WG, Earley CJ (2003) Neuropathological examination suggests impaired brain iron acquisition in restless legs syndrome. Neurology 61(3):304–309.  https://doi.org/10.1212/01.wnl.0000078887.16593.12 CrossRefPubMedGoogle Scholar
  49. Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Phys 246(2 Pt 2):R161–R183.  https://doi.org/10.1152/ajpregu.1984.246.2.R161 CrossRefGoogle Scholar
  50. Danilenko KV, Cajochen C, Wirz-Justice A (2003) Is sleep per se a zeitgeber in humans? J Biol Rhythm 18(2):170–178.  https://doi.org/10.1177/0748730403251732 CrossRefGoogle Scholar
  51. Datta S (1995) Neuronal activity in the peribrachial area: relationship to behavioral state control. Neurosci Biobehav Rev 19(1):67–84.  https://doi.org/10.1016/0149-7634(94)00043-z CrossRefPubMedGoogle Scholar
  52. Datta S (2006) Activation of phasic pontine-wave generator: a mechanism for sleep-dependent memory processing. Sleep Biol Rhythms 4(1):16–26.  https://doi.org/10.1111/j.1479-8425.2006.00202.x CrossRefGoogle Scholar
  53. Datta S, Maclean RR (2007) Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 31(5):775–824.  https://doi.org/10.1016/j.neubiorev.2007.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Datta S, Siwek DF, Stack EC (2009) Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep. Neuroscience 163(1):397–414.  https://doi.org/10.1016/j.neuroscience.2009.06.035 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6(10):1086–1090.  https://doi.org/10.1038/nn1122 CrossRefPubMedGoogle Scholar
  56. Dement WC (2005) History of sleep medicine. Neurol Clin 23(4):945–965., v.  https://doi.org/10.1016/j.ncl.2005.07.001 CrossRefPubMedGoogle Scholar
  57. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72(1):517–549.  https://doi.org/10.1146/annurev-physiol-021909-135821 CrossRefPubMedGoogle Scholar
  58. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126.  https://doi.org/10.1038/nrn2762 CrossRefPubMedGoogle Scholar
  59. Dinges DF (2006) The state of sleep deprivation: from functional biology to functional consequences. Sleep Med Rev 10(5):303–305.  https://doi.org/10.1016/j.smrv.2006.07.001 CrossRefPubMedGoogle Scholar
  60. Domhoff GW (1996) Finding meaning in dreams. Springer US, New York, NY.  https://doi.org/10.1007/978-1-4899-0298-6 CrossRefGoogle Scholar
  61. Domhoff GW (2003) The scientific study of dreams: neural networks, cognitive development, and content analysis. Am Psychol Assoc.  https://doi.org/10.1037/10463-000 CrossRefGoogle Scholar
  62. Doricchi F, Violani C (2000) Mesolimbic dopamine and the neuropsychology of dreaming: some caution and reconsiderations. Behav Brain Sci 23(6):930.  https://doi.org/10.1017/S0140525x00374027 CrossRefGoogle Scholar
  63. Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27(7):1307–1318.  https://doi.org/10.1093/sleep/27.7.1307 CrossRefPubMedGoogle Scholar
  64. Ebert D, Berger M (1998) Neurobiological similarities in antidepressant sleep deprivation and psychostimulant use: a psychostimulant theory of antidepressant sleep deprivation. Psychopharmacology 140(1):1–10.  https://doi.org/10.1007/s002130050732 CrossRefPubMedGoogle Scholar
  65. Economo CV (1930) Sleep as a problem of localization. J Nerv Ment Dis 71(3):249–259.  https://doi.org/10.1097/00005053-193003000-00001 CrossRefGoogle Scholar
  66. Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Muhlethaler M (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108(2):177–181.  https://doi.org/10.1016/s0306-4522(01)00512-7 CrossRefPubMedGoogle Scholar
  67. Ehlers CL, Kupfer DJ (1989) Effects of age on delta and REM sleep parameters. Electroencephalogr Clin Neurophysiol 72(2):118–125.  https://doi.org/10.1016/0013-4694(89)90172-7 CrossRefPubMedGoogle Scholar
  68. Endo T, Schwierin B, Borbely AA, Tobler I (1997) Selective and total sleep deprivation: effect on the sleep EEG in the rat. Psychiatry Res 66(2–3):97–110CrossRefGoogle Scholar
  69. Espana RA, Baldo BA, Kelley AE, Berridge CW (2001) Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106(4):699–715.  https://doi.org/10.1016/S0306-4522(01)00319-0 CrossRefPubMedGoogle Scholar
  70. Esteban S, Nicolau MC, Gamundi A, Akaârir M, Rial RV (2005) Animal sleep: phylogenetic correlations. The physiologic nature of sleep. Imperial College Press, London.  https://doi.org/10.1142/9781860947186_0010 CrossRefGoogle Scholar
  71. Fedirchuk B, Dai Y (2004) Monoamines increase the excitability of spinal neurones in the neonatal rat by hyperpolarizing the threshold for action potential production. J Physiol 557(Pt 2):355–361.  https://doi.org/10.1113/jphysiol.2004.064022 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Fischer S, Born J (2009) Anticipated reward enhances offline learning during sleep. J Exp Psychol Learn Mem Cogn 35(6):1586–1593.  https://doi.org/10.1037/a0017256 CrossRefPubMedGoogle Scholar
  73. Ford DE, Kamerow DB (1989) Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention? JAMA 262(11):1479–1484.  https://doi.org/10.1001/jama.1989.03430110069030 CrossRefPubMedGoogle Scholar
  74. Fosse R, Stickgold R, Hobson JA (2001) The mind in REM sleep: reports of emotional experience. Sleep 24(8):947–955.  https://doi.org/10.1093/sleep/24.8.1 CrossRefPubMedGoogle Scholar
  75. Fosse MJ, Fosse R, Hobson JA, Stickgold RJ (2003) Dreaming and episodic memory: a functional dissociation? J Cogn Neurosci 15(1):1–9.  https://doi.org/10.1162/089892903321107774 CrossRefPubMedGoogle Scholar
  76. Foulkes D, Sullivan B, Kerr NH, Brown L (1988) Appropriateness of dream feelings to dreamed situations. Cognit Emot 2(1):29–39.  https://doi.org/10.1080/02699938808415227 CrossRefGoogle Scholar
  77. Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80(4):1523–1631.  https://doi.org/10.1152/physrev.2000.80.4.1523 CrossRefPubMedGoogle Scholar
  78. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519(5):933–956.  https://doi.org/10.1002/cne.22559 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gaillard JM, Moneme A (1977) Modification of dream content after preferential blockade of mesolimbic and mesocortical dopaminergic systems. J Psychiatr Res 13(4):247–256.  https://doi.org/10.1016/s0022-3956(77)90020-6 CrossRefPubMedGoogle Scholar
  80. Gallopin T, Fort P, Luppi P-H (2004) In vitro identification of the presumed sleep-promoting neurons of the ventrolateral preoptic nucleus (VLPO). Sleep. CRC Press, Boca Raton, FL.  https://doi.org/10.1201/9780203496732.ch3 CrossRefGoogle Scholar
  81. Garcia-Rill E (2002) The sleep state-dependent midlatency auditory evoked P50 potential in various disorders. Thalamus Relat Syst 2(1):9–19.  https://doi.org/10.1016/s1472-9288(02)00032-8 CrossRefGoogle Scholar
  82. Gaus SE, Strecker RE, Tate BA, Parker RA, Saper CB (2002) Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 115(1):285–294.  https://doi.org/10.1016/s0306-4522(02)00308-1 CrossRefPubMedGoogle Scholar
  83. Gaykema RP, Zaborszky L (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. II Substantia nigra-ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374(4):555–577.  https://doi.org/10.1002/(SICI)1096-9861(19961028)374:4<555::AID-CNE6>3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  84. Gerashchenko D, Shiromani PJ (2004) Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness. Mol Neurobiol 29(1):41–59.  https://doi.org/10.1385/Mn:29:1:41 CrossRefPubMedGoogle Scholar
  85. Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T, de la Iglesia HO, Kilduff TS (2008) Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci U S A 105(29):10227–10232.  https://doi.org/10.1073/pnas.0803125105 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Giedke H, Schwarzler F (2002) Therapeutic use of sleep deprivation in depression. Sleep Med Rev 6(5):361–377.  https://doi.org/10.1053/smrv.2002.0235 CrossRefPubMedGoogle Scholar
  87. Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556(Pt 3):935–946.  https://doi.org/10.1113/jphysiol.2003.056622 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Gottesmann C (2002) GABA mechanisms and sleep. Neuroscience 111(2):231–239.  https://doi.org/10.1016/s0306-4522(02)00034-9 CrossRefPubMedGoogle Scholar
  89. Gottesmann C, Gottesman I (2007) The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Prog Neurobiol 81(4):237–250.  https://doi.org/10.1016/j.pneurobio.2007.01.004 CrossRefPubMedGoogle Scholar
  90. Greenspan RJ, Tononi G, Cirelli C, Shaw PJ (2001) Sleep and the fruit fly. Trends Neurosci 24(3):142–145.  https://doi.org/10.1016/s0166-2236(00)01719-7 CrossRefPubMedGoogle Scholar
  91. Gritti I, Mainville L, Jones BE (1994) Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. J Comp Neurol 339(2):251–268.  https://doi.org/10.1002/cne.903390206 CrossRefPubMedGoogle Scholar
  92. Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383(2):163–177.  https://doi.org/10.1002/(sici)1096-9861(19970630)383:2<163::aid-cne4>3.3.co;2-t CrossRefPubMedGoogle Scholar
  93. Guaraldi P, Calandra-Buonaura G, Terlizzi R, Montagna P, Lugaresi E, Tinuper P, Cortelli P, Provini F (2011) Oneiric stupor: the peculiar behaviour of agrypnia excitata. Sleep Med 12(Suppl 2):S64–S67.  https://doi.org/10.1016/j.sleep.2011.10.014 CrossRefPubMedGoogle Scholar
  94. Guilleminault C, Anagnos A (2000) Narcolepsy. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine, 3rd edn. WB Saunders, Philadelphia, PA, pp 676–686Google Scholar
  95. Gujar N, McDonald SA, Nishida M, Walker MP (2011) A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions. Cereb Cortex 21(1):115–123.  https://doi.org/10.1093/cercor/bhq064 CrossRefPubMedGoogle Scholar
  96. Gvilia I, Turner A, McGinty D, Szymusiak R (2006) Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep. J Neurosci 26(11):3037–3044.  https://doi.org/10.1523/JNEUROSCI.4827-05.2006 CrossRefPubMedGoogle Scholar
  97. Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437(7058):556–559.  https://doi.org/10.1038/nature04071 CrossRefPubMedGoogle Scholar
  98. Harvey AG (2008) Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry 165(7):820–829.  https://doi.org/10.1176/appi.ajp.2008.08010098 CrossRefPubMedGoogle Scholar
  99. Hasler BP, Buysse DJ, Kupfer DJ, Germain A (2010) Phase relationships between core body temperature, melatonin, and sleep are associated with depression severity: further evidence for circadian misalignment in non-seasonal depression. Psychiatry Res 178(1):205–207.  https://doi.org/10.1016/j.psychres.2010.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070.  https://doi.org/10.1126/science.1069609 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Hendricks JC, Morrison AR, Mann GL (1982) Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res 239(1):81–105.  https://doi.org/10.1016/0006-8993(82)90835-6 CrossRefPubMedGoogle Scholar
  102. Higgins E, George M (2007) Neuroscience of clinical psychiatry, the pathophysiology of behavior and mental illness. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  103. Hobson JA (1990) Sleep and dreaming. J Neurosci 10(2):371–382.  https://doi.org/10.1523/jneurosci.10-02-00371.1990 CrossRefPubMedGoogle Scholar
  104. Hobson JA, Pace-Schott EF (2002) The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 3(9):679–693.  https://doi.org/10.1038/nrn915 CrossRefPubMedGoogle Scholar
  105. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189(4196):55–58.  https://doi.org/10.1126/science.1094539 CrossRefPubMedGoogle Scholar
  106. Hobson JA, Pace-Schott EF, Stickgold R (2000) Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav Brain Sci 23(6):793–842.; discussion 904–1121.  https://doi.org/10.1017/s0140525x00003976 CrossRefPubMedGoogle Scholar
  107. Howell MJ, Schenck CH (2012) Restless nocturnal eating: a common feature of Willis-Ekbom Syndrome (RLS). J Clin Sleep Med 8(4):413–419.  https://doi.org/10.5664/jcsm.2036 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Iglowstein I, Jenni OG, Molinari L, Largo RH (2003) Sleep duration from infancy to adolescence: reference values and generational trends. Pediatrics 111(2):302–307.  https://doi.org/10.1542/peds.111.2.302 CrossRefPubMedGoogle Scholar
  109. Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10(3):199–210.  https://doi.org/10.1038/nrn2576 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Iwase T, Kajimura N, Uchiyama M, Ebisawa T, Yoshimura K, Kamei Y, Shibui K, Kim K, Kudo Y, Katoh M, Watanabe T, Nakajima T, Ozeki Y, Sugishita M, Hori T, Ikeda M, Toyoshima R, Inoue Y, Yamada N, Mishima K, Nomura M, Ozaki N, Okawa M, Takahashi K, Yamauchi T (2002) Mutation screening of the human Clock gene in circadian rhythm sleep disorders. Psychiatry Res 109(2):121–128.  https://doi.org/10.1016/s0165-1781(02)00006-9 CrossRefPubMedGoogle Scholar
  111. Jackson A, Cavanagh J, Scott J (2003) A systematic review of manic and depressive prodromes. J Affect Disord 74(3):209–217.  https://doi.org/10.1016/s0165-0327(02)00266-5 CrossRefPubMedGoogle Scholar
  112. Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72(1):165–229.  https://doi.org/10.1152/physrev.1992.72.1.165 CrossRefPubMedGoogle Scholar
  113. John J, Kumar VM (1998) Effect of NMDA lesion of the medial preoptic neurons on sleep and other functions. Sleep 21(6):587–598.  https://doi.org/10.1093/sleep/21.6.587 CrossRefPubMedGoogle Scholar
  114. John J, Kumar VM, Gopinath G, Ramesh V, Mallick H (1994) Changes in sleep-wakefulness after kainic acid lesion of the preoptic area in rats. Jpn J Physiol 44(3):231–242.  https://doi.org/10.2170/jjphysiol.44.231 CrossRefPubMedGoogle Scholar
  115. John J, Wu MF, Boehmer LN, Siegel JM (2004) Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42(4):619–634.  https://doi.org/10.1016/s0896-6273(04)00247-8 CrossRefPubMedGoogle Scholar
  116. Johnson EO, Roth T, Schultz L, Breslau N (2006) Epidemiology of DSM-IV insomnia in adolescence: lifetime prevalence, chronicity, and an emergent gender difference. Pediatrics 117(2):e247–e256.  https://doi.org/10.1542/peds.2004-2629 CrossRefPubMedGoogle Scholar
  117. Jones B (1972) The respective involvement of noradrenaline and its deaminated metabolites in waking and paradoxical sleep: a neuropharmacological model. Brain Res 39(1):121–136.  https://doi.org/10.1016/0006-8993(72)90789-5 CrossRefPubMedGoogle Scholar
  118. Jones BE (2003) Arousal systems. Front Biosci 8(6):s438–s451.  https://doi.org/10.2741/1074 CrossRefPubMedGoogle Scholar
  119. Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26(11):578–586.  https://doi.org/10.1016/j.tips.2005.09.009 CrossRefPubMedGoogle Scholar
  120. Jones BE (2018) In memoriam Michel Jouvet 1925–2017. Sleep Med 41:116–117.  https://doi.org/10.1016/j.sleep.2017.12.002 CrossRefGoogle Scholar
  121. Jones D, Kelwala S, Bell J, Dube S, Jackson E, Sitaram N (1985) Cholinergic REM sleep induction response correlation with endogenous major depressive subtype. Psychiatry Res 14(2):99–110.  https://doi.org/10.1016/0165-1781(85)90054-x CrossRefPubMedGoogle Scholar
  122. Jouvet M, Michel F (1959) Correlations electromyographiques du sommeil chez le chat decortique et mesencephalique chronique. C R Seances Soc Biol Fil 153:422–425PubMedGoogle Scholar
  123. Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activite electrique cerebrale rapide au cours du sommeil physiologique. C R Seances Soc Biol Fil 153:1024–1028PubMedGoogle Scholar
  124. Kavanau JL (1997) Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neuroscience 79(1):7–44.  https://doi.org/10.1016/s0306-4522(96)00610-0 CrossRefPubMedGoogle Scholar
  125. Khubchandani M, Jagannathan NR, Mallick HN, Mohan Kumar V (2005) Functional MRI shows activation of the medial preoptic area during sleep. NeuroImage 26(1):29–35.  https://doi.org/10.1016/j.neuroimage.2005.01.002 CrossRefPubMedGoogle Scholar
  126. Kirsch DB (2013) Introduction to sleep medicine. Sleep medicine in neurology. John Wiley & Sons, Hoboken, NJ.  https://doi.org/10.1002/9781118764152.ch1 CrossRefGoogle Scholar
  127. Kolla BP, Auger RR (2011) Jet lag and shift work sleep disorders: how to help reset the internal clock. Cleve Clin J Med 78(10):675–684.  https://doi.org/10.3949/ccjm.78a.10083 CrossRefPubMedGoogle Scholar
  128. Koyama Y, Hayaishi O (1994) Firing of neurons in the preoptic/anterior hypothalamic areas in rat: its possible involvement in slow wave sleep and paradoxical sleep. Neurosci Res 19(1):31–38.  https://doi.org/10.1016/0168-0102(94)90005-1 CrossRefPubMedGoogle Scholar
  129. Koyama Y, Kodama T, Takahashi K, Okai K, Kayama Y (2002) Firing properties of neurones in the laterodorsal hypothalamic area during sleep and wakefulness. Psychiatry Clin Neurosci 56(3):339–340.  https://doi.org/10.1046/j.1440-1819.2002.00975.x CrossRefPubMedGoogle Scholar
  130. Koyama Y, Takahashi K, Kodama T, Kayama Y (2003) State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience 119(4):1209–1219.  https://doi.org/10.1016/s0306-4522(03)00173-8 CrossRefPubMedGoogle Scholar
  131. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294(5551):2511–2515.  https://doi.org/10.1126/science.1067716 CrossRefPubMedGoogle Scholar
  132. Krauchi K (2007) The human sleep-wake cycle reconsidered from a thermoregulatory point of view. Physiol Behav 90(2–3):236–245.  https://doi.org/10.1016/j.physbeh.2006.09.005 CrossRefPubMedGoogle Scholar
  133. Krueger JM, Obal F Jr, Kapas L, Fang J (1995) Brain organization and sleep function. Behav Brain Res 69(1–2):177–185.  https://doi.org/10.1016/0166-4328(95)00015-l CrossRefPubMedGoogle Scholar
  134. Kubota T, Uchiyama M, Suzuki H, Shibui K, Kim K, Tan X, Tagaya H, Okawa M, Inoue S (2002) Effects of nocturnal bright light on saliva melatonin, core body temperature and sleep propensity rhythms in human subjects. Neurosci Res 42(2):115–122.  https://doi.org/10.1016/s0168-0102(01)00310-8 CrossRefPubMedGoogle Scholar
  135. Lack LC, Gradisar M, Van Someren EJ, Wright HR, Lushington K (2008) The relationship between insomnia and body temperatures. Sleep Med Rev 12(4):307–317.  https://doi.org/10.1016/j.smrv.2008.02.003 CrossRefPubMedGoogle Scholar
  136. Lai Y-Y, Kodama T, Siegel JM (2001) Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivomicrodialysis study. J Neurosci 21(18):7384–7391.  https://doi.org/10.1523/jneurosci.21-18-07384.2001 CrossRefPubMedGoogle Scholar
  137. Lambert D (2006) Minimax Tests. In: Encyclopedia of statistical sciences. John Wiley & Sons, Inc., Hoboken, NJ.  https://doi.org/10.1002/0471667196.ess1639.pub2 CrossRefGoogle Scholar
  138. Lansink CS, Goltstein PM, Lankelma JV, Joosten RN, McNaughton BL, Pennartz CM (2008) Preferential reactivation of motivationally relevant information in the ventral striatum. J Neurosci 28(25):6372–6382.  https://doi.org/10.1523/JNEUROSCI.1054-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CM (2009) Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 7(8):e1000173.  https://doi.org/10.1371/journal.pbio.1000173 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Lara-Carrasco J, Nielsen TA, Solomonova E, Levrier K, Popova A (2009) Overnight emotional adaptation to negative stimuli is altered by REM sleep deprivation and is correlated with intervening dream emotions. J Sleep Res 18(2):178–187.  https://doi.org/10.1111/j.1365-2869.2008.00709.x CrossRefPubMedGoogle Scholar
  141. Lavie P, Pillar G, Malhotra A (2002) Sleep disorders: diagnosis, management and treatment. a handbook for clinicians. Martin Dunitz, LondonGoogle Scholar
  142. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327.  https://doi.org/10.1073/pnas.95.1.322 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Lee-Chiong T (2008) Sleep medicine: essentials and review. Oxford University Press, OxfordGoogle Scholar
  144. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep—wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81(6):891–899.  https://doi.org/10.1002/jnr.20602 CrossRefPubMedGoogle Scholar
  145. Leonard CS, Llinas R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59(2):309–330.  https://doi.org/10.1016/0306-4522(94)90599-1 CrossRefPubMedGoogle Scholar
  146. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, Schatzberg AF, Jones EG, Myers RM, Watson SJ Jr, Akil H, Bunney WE (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A 110(24):9950–9955.  https://doi.org/10.1073/pnas.1305814110 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Lin JS, Sakai K, Vanni-Mercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479(2):225–240.  https://doi.org/10.1016/0006-8993(89)91623-5 CrossRefPubMedGoogle Scholar
  148. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin XY, Qiu XH, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98 (3):365–376.  https://doi.org/10.1016/S0092-8674(00)81965-0 CrossRefGoogle Scholar
  149. Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the eeg of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1(4):475–486.  https://doi.org/10.1016/0013-4694(49)90221-7 CrossRefPubMedGoogle Scholar
  150. Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95(6):3297–3308.  https://doi.org/10.1152/jn.00166.2006 CrossRefPubMedGoogle Scholar
  151. Loomis AL, Harvey EN, Hobart GA (1937) Cerebral states during sleep, as studied by human brain potentials. J Exp Psychol 21(2):127–144.  https://doi.org/10.1037/h0057431 CrossRefGoogle Scholar
  152. Lu BS, Zee PC (2010) Neurobiology of sleep. Clin Chest Med 31(2):309–318.  https://doi.org/10.1016/j.ccm.2010.02.004 CrossRefPubMedGoogle Scholar
  153. Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441(7093):589–594.  https://doi.org/10.1038/nature04767 CrossRefPubMedGoogle Scholar
  154. Luboshitzky R (2000) Endocrine activity during sleep. J Pediatr Endocrinol Metab 13(1):13–20.  https://doi.org/10.1515/jpem.2000.13.1.13 CrossRefPubMedGoogle Scholar
  155. Lydic R, McCarley RW, Hobson JA (1983) The time-course of dorsal raphe discharge, PGO waves, and muscle tone averaged across multiple sleep cycles. Brain Res 274(2):365–370.  https://doi.org/10.1016/0006-8993(83)90720-5 CrossRefPubMedGoogle Scholar
  156. el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76(3):519–529.  https://doi.org/10.1007/bf00248908 CrossRefPubMedGoogle Scholar
  157. Maquet P (2001) The role of sleep in learning and memory. Science 294(5544):1048–1052.  https://doi.org/10.1126/science.1062856 CrossRefPubMedGoogle Scholar
  158. Maquet P, Peters J, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163–166.  https://doi.org/10.1038/383163a0 CrossRefPubMedGoogle Scholar
  159. Maquet P, Schwartz S, Passingham R, Frith C (2003) Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J Neurosci 23(4):1432–1440.  https://doi.org/10.1523/jneurosci.23-04-01432.2003 CrossRefPubMedGoogle Scholar
  160. McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8(4):302–330.  https://doi.org/10.1016/j.sleep.2007.03.005 CrossRefPubMedGoogle Scholar
  161. McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189(4196):58–60.  https://doi.org/10.1126/science.1135627 CrossRefPubMedGoogle Scholar
  162. McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20(1):185–215.  https://doi.org/10.1146/annurev.neuro.20.1.185 CrossRefPubMedGoogle Scholar
  163. McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101(3):569–575.  https://doi.org/10.1016/0006-8993(76)90480-7 CrossRefPubMedGoogle Scholar
  164. McGinty D, Szymusiak R (2000) The sleep-wake switch: a neuronal alarm clock. Nat Med 6(5):510–511.  https://doi.org/10.1038/74988 CrossRefPubMedGoogle Scholar
  165. McGinty D, Szymusiak R (2003) Hypothalamic regulation of sleep and arousal. Front Biosci 8(6):s1074–s1083.  https://doi.org/10.2741/1159 CrossRefPubMedGoogle Scholar
  166. McGinty D, Szymusiak R (2017) Neural control of sleep in mammals. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine. Elsevier, Amsterdam.  https://doi.org/10.1016/b978-0-323-24288-2.00007-6 CrossRefGoogle Scholar
  167. McNamara P, Auerbach S, Johnson P, Harris E, Doros G (2010) Impact of REM sleep on distortions of self-concept, mood and memory in depressed/anxious participants. J Affect Disord 122(3):198–207.  https://doi.org/10.1016/j.jad.2009.06.030 CrossRefPubMedGoogle Scholar
  168. Mellman TA (2006) Sleep and anxiety disorders. Psychiatr Clin North Am 29(4):1047–1058.  https://doi.org/10.1016/j.psc.2006.08.005 CrossRefPubMedGoogle Scholar
  169. Mellman TA (2008) In psychiatric clinics of North America. Sleep Med Clin 3(2):261–268.  https://doi.org/10.1016/j.jsmc.2008.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Mendelson H, Ziegler J (2001) Organisations-intelligenz IQ. Gabler Verlag, Wiesbaden.  https://doi.org/10.1007/978-3-322-82344-1 CrossRefGoogle Scholar
  171. Mendelson WB, Bergmann BM, Tung A (2003) Baseline and post-deprivation recovery sleep in SCN-lesioned rats. Brain Res 980(2):185–190.  https://doi.org/10.1016/s0006-8993(03)02896-8 CrossRefPubMedGoogle Scholar
  172. Merritt JM, Stickgold R, Paceschott E, Williams J, Hobson JA (1994) Emotion profiles in the dreams of men and women. Conscious Cogn 3(1):46–60.  https://doi.org/10.1006/ccog.1994.1004 CrossRefGoogle Scholar
  173. Mignot E, Nishino S (2005) Emerging therapies in narcolepsy-cataplexy. Sleep 28(6):754–763.  https://doi.org/10.1093/sleep/28.6.754 CrossRefPubMedGoogle Scholar
  174. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46(5):787–798.  https://doi.org/10.1016/j.neuron.2005.04.035 CrossRefPubMedGoogle Scholar
  175. Mitler MM, Harsh J, Hirshkowitz M, Guilleminault C (2000) Long-term efficacy and safety of modafinil (PROVIGIL®) for the treatment of excessive daytime sleepiness associated with narcolepsy. Sleep Med 1(3):231–243.  https://doi.org/10.1016/s1389-9457(00)00031-9 CrossRefPubMedGoogle Scholar
  176. Mizoguchi A, Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, Mochizuki T, Lazarus M, Kobayashi T, Kaneko T, Narumiya S, Urade Y, Hayaishi O (2001) Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 98(20):11674–11679.  https://doi.org/10.1073/pnas.201398898 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Montagna P, Gambetti P, Cortelli P, Lugaresi E (2003) Familial and sporadic fatal insomnia. Lancet Neurol 2(3):167–176.  https://doi.org/10.1016/s1474-4422(03)00323-5 CrossRefPubMedGoogle Scholar
  178. Monti R (1993) Preface. Acta Astronaut 30:ix.  https://doi.org/10.1016/0094-5765(93)90093-c CrossRefGoogle Scholar
  179. Morrison DN, McGee R, Stanton WR (1992) Sleep problems in adolescence. J Am Acad Child Adolesc Psychiatry 31(1):94–99.  https://doi.org/10.1097/00004583-199201000-00014 CrossRefPubMedGoogle Scholar
  180. Morrissey MJ, Duntley SP, Anch AM, Nonneman R (2004) Active sleep and its role in the prevention of apoptosis in the developing brain. Med Hypotheses 62(6):876–879.  https://doi.org/10.1016/j.mehy.2004.01.014 CrossRefPubMedGoogle Scholar
  181. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1(4):455–473.  https://doi.org/10.1016/0013-4694(49)90219-9 CrossRefPubMedGoogle Scholar
  182. Murck H, Guldner J, Colla-Muller M, Frieboes RM, Schier T, Wiedemann K, Holsboer F, Steiger A (1996) VIP decelerates non-REM-REM cycles and modulates hormone secretion during sleep in men. Am J Phys 271(4 Pt 2):R905–R911.  https://doi.org/10.1152/ajpregu.1996.271.4.R905 CrossRefGoogle Scholar
  183. Nakanishi H, Sun Y, Nakamura RK, Mori K, Ito M, Suda S, Namba H, Storch FI, Dang TP, Mendelson W, Mishkin M, Kennedy C, Gillin JC, Smith CB, Sokoloff L (1997) Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9(2):271–279.  https://doi.org/10.1111/j.1460-9568.1997.tb01397.x CrossRefPubMedGoogle Scholar
  184. Nielsen-Bohlman L, Knight RT, Woods DL, Woodward K (1991) Differential auditory processing continues during sleep. Electroencephalogr Clin Neurophysiol 79(4):281–290.  https://doi.org/10.1016/0013-4694(91)90124-m CrossRefPubMedGoogle Scholar
  185. Nir Y, Tononi G (2010) Dreaming and the brain: from phenomenology to neurophysiology. Trends Cogn Sci 14(2):88–100.  https://doi.org/10.1016/j.tics.2009.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Nishino S, Mignot E (1997) Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 52(1):27–78.  https://doi.org/10.1016/s0301-0082(96)00070-6 CrossRefPubMedGoogle Scholar
  187. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40.  https://doi.org/10.1016/S0140-6736(99)05582-8 CrossRefPubMedGoogle Scholar
  188. Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770(1–2):192–201.  https://doi.org/10.1016/s0006-8993(97)00807-x CrossRefPubMedGoogle Scholar
  189. Nofzinger EA, Buysse DJ, Germain A, Price JC, Miewald JM, Kupfer DJ (2004) Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry 161(11):2126–2128.  https://doi.org/10.1176/appi.ajp.161.11.2126 CrossRefPubMedGoogle Scholar
  190. Norman W, Hayward L, Geyer J, Carney P (2011) The neurobiology of sleep. In: Carney P, Berry R, Geyer J (eds) Clinical sleep disorders, 2nd edn. Wolters Kluwer, Alphen aan den Rijn, pp 35–51Google Scholar
  191. Obal F Jr, Krueger JM (2004) GHRH and sleep. Sleep Med Rev 8(5):367–377.  https://doi.org/10.1016/j.smrv.2004.03.005 CrossRefPubMedGoogle Scholar
  192. Ohayon MM (1997) Prevalence of DSM-IV diagnostic criteria of insomnia: distinguishing insomnia related to mental disorders from sleep disorders. J Psychiatr Res 31(3):333–346.  https://doi.org/10.1016/s0022-3956(97)00002-2 CrossRefPubMedGoogle Scholar
  193. Ohayon MM (2002) Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev 6(2):97–111.  https://doi.org/10.1053/smrv.2002.0186 CrossRefPubMedGoogle Scholar
  194. Ohayon MM, Roth T (2003) Place of chronic insomnia in the course of depressive and anxiety disorders. J Psychiatr Res 37(1):9–15.  https://doi.org/10.1016/s0022-3956(02)00052-3 CrossRefPubMedGoogle Scholar
  195. Ohayon MM, Caulet M, Lemoine P (1998) Comorbidity of mental and insomnia disorders in the general population. Compr Psychiatry 39(4):185–197.  https://doi.org/10.1016/s0010-440x(98)90059-1 CrossRefPubMedGoogle Scholar
  196. Opp MR (2009) Sleeping to fuel the immune system: mammalian sleep and resistance to parasites. BMC Evol Biol 9(1):8.  https://doi.org/10.1186/1471-2148-9-8 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3(8):591–605.  https://doi.org/10.1038/nrn895 CrossRefPubMedGoogle Scholar
  198. Pace-Schott EF, Nave G, Morgan A, Spencer RM (2012) Sleep-dependent modulation of affectively guided decision-making. J Sleep Res 21(1):30–39.  https://doi.org/10.1111/j.1365-2869.2011.00921.x CrossRefPubMedGoogle Scholar
  199. Pandey HP, Ram A, Matsumura H, Satoh S, Hayaishi O (1995) Circadian variations of prostaglandins D2, E2, and F2 alpha in the cerebrospinal fluid of anesthetized rats. Biochem Biophys Res Commun 213(2):625–629.  https://doi.org/10.1006/bbrc.1995.2177 CrossRefPubMedGoogle Scholar
  200. Pandi-Perumal SR, Kramer M (2011) Preface. Sleep and mental illness. Cambridge University Press, Cambridge.  https://doi.org/10.1017/cbo9781139042734.002 CrossRefGoogle Scholar
  201. Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81(8):2572–2576.  https://doi.org/10.1073/pnas.81.8.2572 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Parmelee AH (1961) Sleep patterns in infancy a study of one idant from birth to eight months of age. Acta Paediatr 50(2):160–170.  https://doi.org/10.1111/j.1651-2227.1961.tb08035.x CrossRefPubMedGoogle Scholar
  203. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx J-L, Watanabe T, Lin J-S (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep–wake control. J Neurosci 22(17):7695–7711.  https://doi.org/10.1523/jneurosci.22-17-07695.2002 CrossRefPubMedGoogle Scholar
  204. Payne JD, Kensinger EA (2011) Sleep leads to changes in the emotional memory trace: evidence from FMRI. J Cogn Neurosci 23(6):1285–1297.  https://doi.org/10.1162/jocn.2010.21526 CrossRefPubMedGoogle Scholar
  205. Payne JL, Quiroz JA, Zarate CA, Manji HK (2002) Timing is everything: does the robust upregulation of noradrenergically regulated plasticity genes underlie the rapid antidepressant effects of sleep deprivation? Biol Psychiatry 52(10):921–926.  https://doi.org/10.1016/s0006-3223(02)01676-1 CrossRefPubMedGoogle Scholar
  206. Pennartz CM, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL (2004) The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci 24(29):6446–6456.  https://doi.org/10.1523/JNEUROSCI.0575-04.2004 CrossRefPubMedGoogle Scholar
  207. Penzel T, Wessel N, Riedl M, Kantelhardt JW, Rostig S, Glos M, Suhrbier A, Malberg H, Fietze I (2007) Cardiovascular and respiratory dynamics during normal and pathological sleep. Chaos 17(1):015116.  https://doi.org/10.1063/1.2711282 CrossRefPubMedGoogle Scholar
  208. Perogamvros L, Schwartz S (2012) The roles of the reward system in sleep and dreaming. Neurosci Biobehav Rev 36(8):1934–1951.  https://doi.org/10.1016/j.neubiorev.2012.05.010 CrossRefPubMedGoogle Scholar
  209. Perry EK, Piggott MA (2000) Neurotransmitter mechanisms of dreaming: implication of modulatory systems based on dream intensity. Behav Brain Sci 23(6):990.  https://doi.org/10.1017/S0140525x00774024 CrossRefGoogle Scholar
  210. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015.  https://doi.org/10.1523/jneurosci.18-23-09996.1998 CrossRefPubMedGoogle Scholar
  211. Plante DT, Winkelman JW (2008) Sleep disturbance in bipolar disorder: therapeutic implications. Am J Psychiatry 165(7):830–843.  https://doi.org/10.1176/appi.ajp.2008.08010077 CrossRefPubMedGoogle Scholar
  212. Ponz A, Khatami R, Poryazova R, Werth E, Boesiger P, Schwartz S, Bassetti CL (2010) Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann Neurol 67(3):394–398.  https://doi.org/10.1002/ana.21881 CrossRefPubMedGoogle Scholar
  213. Popa D, Duvarci S, Popescu AT, Lena C, Pare D (2010) Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A 107(14):6516–6519.  https://doi.org/10.1073/pnas.0913016107 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268.  https://doi.org/10.1126/science.276.5316.1265 CrossRefPubMedPubMedCentralGoogle Scholar
  215. Portas CM, McCarley RW (1994) Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res 648(2):306–312.  https://doi.org/10.1016/0006-8993(94)91132-0 CrossRefPubMedGoogle Scholar
  216. Pressman MR (2007) Factors that predispose, prime and precipitate NREM parasomnias in adults: clinical and forensic implications. Sleep Med Rev 11(1):5–30.; discussion 31–33.  https://doi.org/10.1016/j.smrv.2006.06.003 CrossRefPubMedGoogle Scholar
  217. Prince TM, Wimmer M, Choi J, Havekes R, Aton S, Abel T (2014) Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol Learn Mem 109:122–130.  https://doi.org/10.1016/j.nlm.2013.11.021 CrossRefPubMedGoogle Scholar
  218. Ram A, Pandey HP, Matsumura H, Kasahara-Orita K, Nakajima T, Takahata R, Satoh S, Terao A, Hayaishi O (1997) CSF levels of prostaglandins, especially the level of prostaglandin D2, are correlated with increasing propensity towards sleep in rats. Brain Res 751(1):81–89.  https://doi.org/10.1016/s0006-8993(96)01401-1 CrossRefPubMedGoogle Scholar
  219. Raman M (2013) Restless legs syndrome, periodic limb movements, and other movement disorders in sleep. Sleep medicine in neurology. John Wiley & Sons, Hoboken, NJ.  https://doi.org/10.1002/9781118764152.ch12 CrossRefGoogle Scholar
  220. Rasmussen K, Jacobs BL (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. Brain Res 371(2):335–344.  https://doi.org/10.1016/0006-8993(86)90371-9 CrossRefPubMedGoogle Scholar
  221. Reading PJ (2010) Sleep disorders in neurology. Pract Neurol 10(5):300–309.  https://doi.org/10.1136/jnnp.2010.224097 CrossRefPubMedGoogle Scholar
  222. Reading P (2013) ABC of Sleep medicine. Wiley-Blackwell, ChichesterGoogle Scholar
  223. Reid KJ, Chang AM, Dubocovich ML, Turek FW, Takahashi JS, Zee PC (2001) Familial advanced sleep phase syndrome. Arch Neurol 58(7):1089–1094.  https://doi.org/10.1001/archneur.58.7.1089 CrossRefPubMedGoogle Scholar
  224. Riemann D, Voderholzer U (2003) Primary insomnia: a risk factor to develop depression? J Affect Disord 76(1–3):255–259.  https://doi.org/10.1016/s0165-0327(02)00072-1 CrossRefPubMedGoogle Scholar
  225. Riou F, Cespuglio R, Jouvet M (1982) Endogenous peptides and sleep in the rat: III the hypnogenic properties of vasoactive intestinal polypeptide. Neuropeptides 2(5):265–277.  https://doi.org/10.1016/0143-4179(82)90016-6 CrossRefGoogle Scholar
  226. Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science 152(3722):604–619.  https://doi.org/10.1126/science.152.3722.604 CrossRefPubMedGoogle Scholar
  227. Rosner F (1965) The hygienic principles of Moses Maimonides. JAMA 194(13):1352–1354.  https://doi.org/10.1001/jama.1965.03090260012003 CrossRefPubMedGoogle Scholar
  228. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA Jr, McClung CA (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 104(15):6406–6411.  https://doi.org/10.1073/pnas.0609625104 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Sakai K, Crochet S (2003) A neural mechanism of sleep and wakefulness. Sleep Biol Rhythms 1(1):29–42.  https://doi.org/10.1046/j.1446-9235.2003.00004.x CrossRefGoogle Scholar
  230. Sakai K, Sastre JP, Salvert D, Touret M, Tohyama M, Jouvet M (1979) Tegmentoreticular projections with special reference to the muscular atonia during paradoxical sleep in the cat: an HRP study. Brain Res 176(2):233–254.  https://doi.org/10.1016/0006-8993(79)90981-8 CrossRefPubMedGoogle Scholar
  231. Sakurai N, Sasaki M (1998) An activity monitor study on the sleep-wake rhythm of healthy aged people residing in their homes. Psychiatry Clin Neurosci 52(2):253–255.  https://doi.org/10.1111/j.1440-1819.1998.tb01060.x CrossRefPubMedGoogle Scholar
  232. Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M (1989) Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32(3):669–683.  https://doi.org/10.1016/0306-4522(89)90289-3 CrossRefPubMedGoogle Scholar
  233. Saper CB, Scammell TE (2013) Emerging therapeutics in sleep. Ann Neurol 74(3):435–440.  https://doi.org/10.1002/ana.24000 CrossRefPubMedGoogle Scholar
  234. Saper CB, Cano G, Scammell TE (2005) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 493(1):92–98.  https://doi.org/10.1002/cne.20770 CrossRefPubMedGoogle Scholar
  235. Sassin JF, Frantz AG, Weitzman ED, Kapen S (1972) Human prolactin: 24-hour pattern with increased release during sleep. Science 177(4055):1205–1207.  https://doi.org/10.1126/science.177.4055.1205 CrossRefPubMedGoogle Scholar
  236. Scammell T, Gerashchenko D, Urade Y, Onoe H, Saper C, Hayaishi O (1998) Activation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Proc Natl Acad Sci U S A 95(13):7754–7759.  https://doi.org/10.1073/pnas.95.13.7754 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Scammell TE, Arrigoni E, Lipton JO (2017) Neural circuitry of wakefulness and sleep. Neuron 93(4):747–765.  https://doi.org/10.1016/j.neuron.2017.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Schenck CH, Mahowald MW (2002) REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep 25(2):120–138.  https://doi.org/10.1093/sleep/25.2.120 CrossRefPubMedGoogle Scholar
  239. Schmidt MH, Schmidt HS (2004) Sleep-related erections: neural mechanisms and clinical significance. Curr Neurol Neurosci Rep 4(2):170–178.  https://doi.org/10.1007/s11910-004-0033-5 CrossRefPubMedGoogle Scholar
  240. Schredl M (2010) Dreams. Foundations of psychiatric sleep medicine. Cambridge University Press, Cambridge.  https://doi.org/10.1017/cbo9780511777493.007 CrossRefGoogle Scholar
  241. Schredl M, Hofmann F (2003) Continuity between waking activities and dream activities. Conscious Cogn 12(2):298–308.  https://doi.org/10.1016/S1053-8100(02)00072-7 CrossRefPubMedGoogle Scholar
  242. Schultz W (2010) Subjective neuronal coding of reward: temporal value discounting and risk. Eur J Neurosci 31(12):2124–2135.  https://doi.org/10.1111/j.1460-9568.2010.07282.x CrossRefPubMedGoogle Scholar
  243. Schwartz S, Maquet P, Frith C (2002) Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci U S A 99(26):17137–17142.  https://doi.org/10.1073/pnas.242414599 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Schwartz AR, Patil SP, Laffan AM, Polotsky V, Schneider H, Smith PL (2008) Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. Proc Am Thorac Soc 5(2):185–192.  https://doi.org/10.1513/pats.200708-137MG CrossRefPubMedPubMedCentralGoogle Scholar
  245. Siegel JM (2009) The neurobiology of sleep. Semin Neurol 29(4):277–296.  https://doi.org/10.1055/s-0029-1237118 CrossRefPubMedGoogle Scholar
  246. Siegel J (2002) The neural control of sleep and waking. Springer-Verlag, New York. https://link.springer.com/content/pdf/bfm%3A978-0-387-21726-0%2F1.pdf Google Scholar
  247. Silber M, Krahn L, Morgenthaler T (2010) Sleep medicine in clinical practice, 2nd edn. CRC Press, Boca Raton, FL.  https://doi.org/10.3109/9781616310059 CrossRefGoogle Scholar
  248. Solms M (2000) Dreaming and REM sleep are controlled by different brain mechanisms. Sleep and dreaming. Cambridge University Press, Cambridge.  https://doi.org/10.1017/cbo9780511615511.004 CrossRefGoogle Scholar
  249. Spiegel R (2000) Mythe et histoire, images et textes: “les vies de dominique-vivant denon”. Z Kunstgesch 63(4):562.  https://doi.org/10.2307/1594964 CrossRefGoogle Scholar
  250. Srividya R, Mallick HN, Kumar VM (2006) Differences in the effects of medial and lateral preoptic lesions on thermoregulation and sleep in rats. Neuroscience 139(3):853–864.  https://doi.org/10.1016/j.neuroscience.2006.01.003 CrossRefPubMedGoogle Scholar
  251. Stein MD, Friedmann PD (2006) Disturbed sleep and its relationship to alcohol use. Subst Abus 26(1):1–13.  https://doi.org/10.1300/J465v26n01_01 CrossRefGoogle Scholar
  252. Stenberg D (2007) Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sci 64(10):1187–1204.  https://doi.org/10.1007/s00018-007-6530-3 CrossRefPubMedGoogle Scholar
  253. Steriade M (2004) Acetylcholine systems and rhythmic activities during the waking–sleep cycle. Prog Brain Res.  https://doi.org/10.1016/s0079-6123(03)45013-9 Google Scholar
  254. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Springer US, New York, NY.  https://doi.org/10.1007/978-1-4757-4669-3 CrossRefGoogle Scholar
  255. Steriade M, McCarley R (2005) Brain control of wakefulness and sleep, 2nd edn. Springer, New York, NYGoogle Scholar
  256. Steriade M, Domich L, Oakson G, Deschenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57(1):260–273.  https://doi.org/10.1152/jn.1987.57.1.260 CrossRefPubMedGoogle Scholar
  257. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685.  https://doi.org/10.1126/science.8235588 CrossRefPubMedGoogle Scholar
  258. Sterpenich V, Albouy G, Boly M, Vandewalle G, Darsaud A, Balteau E, Dang-Vu TT, Desseilles M, D'Argembeau A, Gais S, Rauchs G, Schabus M, Degueldre C, Luxen A, Collette F, Maquet P (2007) Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLoS Biol 5(11):e282.  https://doi.org/10.1371/journal.pbio.0050282 CrossRefPubMedPubMedCentralGoogle Scholar
  259. Sterpenich V, Albouy G, Darsaud A, Schmidt C, Vandewalle G, Dang Vu TT, Desseilles M, Phillips C, Degueldre C, Balteau E, Collette F, Luxen A, Maquet P (2009) Sleep promotes the neural reorganization of remote emotional memory. J Neurosci 29(16):5143–5152.  https://doi.org/10.1523/JNEUROSCI.0561-09.2009 CrossRefPubMedGoogle Scholar
  260. Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, Hough LB, McCarley RW (2002) Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep–wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 113(3):663–670.  https://doi.org/10.1016/s0306-4522(02)00158-6 CrossRefPubMedGoogle Scholar
  261. Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D (2002) Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 543(Pt 2):665–677.  https://doi.org/10.1113/jphysiol.2002.023085 CrossRefPubMedPubMedCentralGoogle Scholar
  262. Szymusiak R, Alam N, Steininger TL, McGinty D (1998) Sleep–waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803(1–2):178–188.  https://doi.org/10.1016/s0006-8993(98)00631-3 CrossRefPubMedGoogle Scholar
  263. Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26(40):10292–10298.  https://doi.org/10.1523/JNEUROSCI.2341-06.2006 CrossRefPubMedGoogle Scholar
  264. Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153(3):860–870.  https://doi.org/10.1016/j.neuroscience.2008.02.058 CrossRefPubMedGoogle Scholar
  265. Takahashi K, Lin JS, Sakai K (2009) Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161(1):269–292.  https://doi.org/10.1016/j.neuroscience.2009.02.075 CrossRefPubMedGoogle Scholar
  266. Talamini LM, Bringmann LF, de Boer M, Hofman WF (2013) Sleeping worries away or worrying away sleep? Physiological evidence on sleep-emotion interactions. PLoS One 8(5):e62480.  https://doi.org/10.1371/journal.pone.0062480 CrossRefPubMedPubMedCentralGoogle Scholar
  267. Tergau F, Wischer S, Paulus W (1999) Motor system excitability in patients with restless legs syndrome. Neurology 52(5):1060–1063.  https://doi.org/10.1212/wnl.52.5.1060 CrossRefPubMedGoogle Scholar
  268. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474.  https://doi.org/10.1016/s0896-6273(00)00058-1 CrossRefPubMedGoogle Scholar
  269. Thompson JL, Borgland SL (2011) A role for hypocretin/orexin in motivation. Behav Brain Res 217(2):446–453.  https://doi.org/10.1016/j.bbr.2010.09.028 CrossRefPubMedGoogle Scholar
  270. Thompson DF, Pierce DR (1999) Drug-induced nightmares. Ann Pharmacother 33(1):93–98.  https://doi.org/10.1345/aph.18150 CrossRefPubMedGoogle Scholar
  271. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291(5506):1040–1043.  https://doi.org/10.1126/science.1057499 CrossRefPubMedGoogle Scholar
  272. Tononi G, Cirelli C (2011) The neurobiology of sleep. Neurobiology of mental illness. Oxford University Press, Oxford.  https://doi.org/10.1093/med/9780199798261.003.0085 CrossRefGoogle Scholar
  273. Trinder J, Kleiman J, Carrington M, Smith S, Breen S, Tan N, Kim Y (2001) Autonomic activity during human sleep as a function of time and sleep stage. J Sleep Res 10(4):253–264.  https://doi.org/10.1046/j.1365-2869.2001.00263.x CrossRefPubMedGoogle Scholar
  274. Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163(1):135–150.  https://doi.org/10.1016/0006-8993(79)90157-4 CrossRefPubMedGoogle Scholar
  275. Tung A, Lynch JP, Mendelson WB (2001) Prolonged sedation with propofol in the rat does not result in sleep deprivation. Anesth Analg 92:1232–1236.  https://doi.org/10.1097/00000539-200105000-00028 CrossRefPubMedGoogle Scholar
  276. Ueno R, Ishikawa Y, Nakayama T, Hayaishi O (1982) Prostaglandin D2 induces sleep when microinjected into the preoptic area of conscious rats. Biochem Biophys Res Commun 109(2):576–582.  https://doi.org/10.1016/0006-291x(82)91760-0 CrossRefPubMedGoogle Scholar
  277. Van Cauter E, Spiegel K, Tasali E, Leproult R (2008) Metabolic consequences of sleep and sleep loss. Sleep Med 9(Suppl 1):S23–S28.  https://doi.org/10.1016/S1389-9457(08)70013-3 CrossRefPubMedPubMedCentralGoogle Scholar
  278. Verret L, Leger L, Fort P, Luppi PH (2005) Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur J Neurosci 21(9):2488–2504.  https://doi.org/10.1111/j.1460-9568.2005.04060.x CrossRefPubMedGoogle Scholar
  279. Verrier RL, Muller JE, Hobson JA (1996) Sleep, dreams, and sudden death: the case for sleep as an autonomic stress test for the heart. Cardiovasc Res 31(2):181–211.  https://doi.org/10.1016/0008-6363(95)00211-1 CrossRefPubMedGoogle Scholar
  280. Vertes RP (1984) Brainstem control of the events of REM sleep. Prog Neurobiol 22(3):241–288.  https://doi.org/10.1016/0301-0082(84)90020-0 CrossRefPubMedGoogle Scholar
  281. Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142(1):1–20.  https://doi.org/10.1016/j.neuroscience.2006.06.027 CrossRefPubMedGoogle Scholar
  282. Vetrugno R, Manconi M, Ferini-Strambi L, Provini F, Plazzi G, Montagna P (2006) Nocturnal eating: sleep-related eating disorder or night eating syndrome? A videopolysomnographic study. Sleep 29(7):949–954.  https://doi.org/10.1093/sleep/29.7.949 CrossRefPubMedGoogle Scholar
  283. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11(2):200–208.  https://doi.org/10.1038/nn2035 CrossRefPubMedGoogle Scholar
  284. Wagner U, Born J (2008) Memory consolidation during sleep: interactive effects of sleep stages and HPA regulation. Stress 11(1):28–41.  https://doi.org/10.1080/10253890701408822 CrossRefPubMedGoogle Scholar
  285. Wagner U, Gais S, Born J (2001) Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem 8(2):112–119.  https://doi.org/10.1101/lm.36801 CrossRefPubMedPubMedCentralGoogle Scholar
  286. Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight. Nature 427(6972):352–355.  https://doi.org/10.1038/nature02223 CrossRefPubMedGoogle Scholar
  287. Walker MP, Stickgold R (2006) Sleep, memory, and plasticity. Annu Rev Psychol 57(1):139–166.  https://doi.org/10.1146/annurev.psych.56.091103.070307 CrossRefPubMedGoogle Scholar
  288. Walker MP, Liston C, Hobson JA, Stickgold R (2002) Cognitive flexibility across the sleep–wake cycle: REM-sleep enhancement of anagram problem solving. Cogn Brain Res 14(3):317–324.  https://doi.org/10.1016/s0926-6410(02)00134-9 CrossRefGoogle Scholar
  289. Wang SH, Morris RG (2010) Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61(1):49–79., C41–44.  https://doi.org/10.1146/annurev.psych.093008.100523 CrossRefPubMedGoogle Scholar
  290. Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295(1):13–25.  https://doi.org/10.1016/0006-8993(84)90811-4 CrossRefPubMedGoogle Scholar
  291. Weber F (2017) Modeling the mammalian sleep cycle. Curr Opin Neurobiol 46:68–75.  https://doi.org/10.1016/j.conb.2017.07.009 CrossRefPubMedGoogle Scholar
  292. Wehr TA (1991) The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab 73(6):1276–1280.  https://doi.org/10.1210/jcem-73-6-1276 CrossRefPubMedGoogle Scholar
  293. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72(1):551–577.  https://doi.org/10.1146/annurev-physiol-021909-135919 CrossRefPubMedPubMedCentralGoogle Scholar
  294. Wilhelm I, Diekelmann S, Molzow I, Ayoub A, Molle M, Born J (2011) Sleep selectively enhances memory expected to be of future relevance. J Neurosci 31(5):1563–1569.  https://doi.org/10.1523/JNEUROSCI.3575-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  295. Williams JA, Reiner PB (1993) Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J Neurosci 13(9):3878–3883.  https://doi.org/10.1523/jneurosci.13-09-03878.1993 CrossRefPubMedGoogle Scholar
  296. Winkelman JW (2006) Sleep-related eating disorder and night eating syndrome: sleep disorders, eating disorders, or both? Comment on Vetrugno R; Manconi M; Ferini-Strambi L et al. Nocturnal eating: sleep-related eating disorder or night eating syndrome? A videopolysomnographic study. Sleep 29(7):949–954.  https://doi.org/10.1093/sleep/29.7.876 CrossRefGoogle Scholar
  297. Wirz-Justice A, Tobler I, Kafka MS, Naber D, Marangos PJ, Borbely AA, Wehr TA (1981) Sleep deprivation: effects on circadian rhythms of rat brain neurotransmitter receptors. Psychiatry Res 5(1):67–76.  https://doi.org/10.1016/0165-1781(81)90062-7 CrossRefPubMedGoogle Scholar
  298. Wirz-Justice A, Benedetti F, Terman M (2009) Chronobiology in everyday life. Chronotherapeutics for affective disorders. Karger, Basel.  https://doi.org/10.1159/000210076 CrossRefGoogle Scholar
  299. Wurts SW, Edgar DM (2000) Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci 20(11):4300–4310.  https://doi.org/10.1523/jneurosci.20-11-04300.2000 CrossRefPubMedGoogle Scholar
  300. Xi MC, Morales FR, Chase MH (2004) Interactions between GABAergic and cholinergic processes in the nucleus pontis oralis: neuronal mechanisms controlling active (rapid eye movement) sleep and wakefulness. J Neurosci 24(47):10670–10678.  https://doi.org/10.1523/JNEUROSCI.1987-04.2004 CrossRefPubMedGoogle Scholar
  301. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377.  https://doi.org/10.1126/science.1241224 CrossRefPubMedGoogle Scholar
  302. Zarcone VP Jr, Benson KL, Berger PA (1987) Abnormal rapid eye movement latencies in schizophrenia. Arch Gen Psychiatry 44(1):45–48.  https://doi.org/10.1001/archpsyc.1987.01800130047007 CrossRefPubMedGoogle Scholar
  303. Zee PC, Manthena P (2007) The brain’s master circadian clock: implications and opportunities for therapy of sleep disorders. Sleep Med Rev 11(1):59–70.  https://doi.org/10.1016/j.smrv.2006.06.001 CrossRefPubMedGoogle Scholar
  304. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci 23(8):3555–3560.  https://doi.org/10.1523/jneurosci.23-08-03555.2003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Theocharis Kyziridis
    • 1
    • 2
  • Ioannis Nimatoudis
    • 1
    • 2
  1. 1.3rd Department of Psychiatry, Faculty of Medicine, School of Health SciencesAristotle University of ThessalonikiThessalonikiGreece
  2. 2.University Hospital AHEPAThessalonikiGreece

Personalised recommendations