Advertisement

Geminiviruses pp 147-169 | Cite as

Replication of DNA Satellites and Their Role in Viral Pathogenesis

  • Muhammad N. Sattar
  • Zafar Iqbal
  • Amir Hameed
Chapter

Abstract

The white-fly borne begomoviruses (family Geminiviridae) have circular single-stranded (css) DNA genome, which is encapsidated as monopartite (DNA-A) or bipartite (DNA-A and DNA-B) in the twinned icosahedrons. During the course of their evolution and to escape host defense machinery, begomoviruses adopt small cssDNA satellites called alpha-, beta-, and deltasatellites. Alphasatellties are found to be associated with begomovirus–betasatellite complexes and encode their own replication-associated protein (Rep), thus capable of autonomous replication. These satellite-like molecules are not well known to serve any critical function for their helper begomovirus except for few reports about attenuation of helper-virus accumulation and/or occasionally suppression of the host defense. Most of the monopartite begomoviruses in the Old World (OW) are found to be associated with betasatellites; however, none of the New World (NW) begomoviruses are known to be associated with betasatellites. Begomoviruses replicate their genome through rolling circle replication (RCR), which requires the virus-encoded Rep to recognize and bind to the iterated sequences (iterons) in the origin of replication (ori) region. Betasatellites lack such iterated sequences; however, they can be transreplicated by a diverse range of begomoviruses, following a similar pattern for replication. Betasatellites play a significant role in viral pathogenesis by interacting with certain host factors, attenuation of disease symptoms, suppression of host defense, and sometimes inter- or intracellular shuttling of begomovirus genome. Likewise, the noncoding molecules deltasatellites depend upon their helper virus for their replication. However, their precise role in viral pathogenesis still needs to be explored.

References

  1. Adams MJ, Lefkowitz EJ, King AMQ, Harrach B et al (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch Virol 162:2505–2538CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akhtar S, Khan AJ, Singh AS, Briddon RW (2014) Identification of a disease complex involving a novel monopartite begomovirus with beta-and alphasatellites associated with okra leaf curl disease in Oman. Arch Virol 159:1199–1205PubMedCrossRefGoogle Scholar
  3. Alberter B, Rezaian MA, Jeske H (2005) Replicative intermediates of Tomato leaf curl virus and its satellite DNAs. Virology 331:441–448PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amin I, Patil BL, Briddon RW, Mansoor S et al (2011) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 8:143PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andleeb S, Amin I, Bashir A, Briddon RW et al (2010) Transient expression of βC1 protein differentially regulates host genes related to stress response, chloroplast and mitochondrial functions. Virol J 7:373PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bagewadi B, Chen S, Lal SK, Choudhury NR et al (2004) PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates rep activity. J Virol 78:11890–11903PubMedPubMedCentralCrossRefGoogle Scholar
  7. Briddon RW, Stanley J (2006) Sub-viral agents associated with plant single-stranded DNA viruses. Virology 344:198–210PubMedCrossRefGoogle Scholar
  8. Briddon RW, Mansoor S, Bedford ID, Pinner MS et al (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243PubMedCrossRefGoogle Scholar
  9. Briddon RW, Bull SE, Amin I, Idris AM et al (2003) Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121PubMedCrossRefGoogle Scholar
  10. Briddon RW, Bull SE, Amin I, Mansoor S et al (2004) Diversity of DNA 1; a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology 324:462–474CrossRefGoogle Scholar
  11. Brown JK, Fauquet CM, Briddon RW, Zerbini M et al (2012) Geminiviridae. Virus taxonomy – Ninth report of the International Committee on Taxonomy of Viruses. Associated Press, Elsevier Inc., London, Waltham, San Diego, pp 351–373Google Scholar
  12. Bull SE, Tsai W-S, Briddon RW, Markham PG et al (2004) Diversity of begomovirus DNA β satellites of non-malvaceous plants in east and south East Asia. Arch Virol 149:1193–1200PubMedCrossRefGoogle Scholar
  13. Chandel V, Singh MK, Jangid A, Dhatwalia S (2016) Emerging satellites associated with begomoviruses: world scenario. In: Gaur RK, Petrov NM, Patil BL, Stoyanova MI (eds) Plant viruses: evolution and management. Springer, Singapore, pp 145–169CrossRefGoogle Scholar
  14. Cheng X, Wang X, Wu J, Briddon RW et al (2011) βC1 encoded by tomato yellow leaf curl China betasatellite forms multimeric complexes in vitro and in vivo. Virology 409:156–162PubMedCrossRefGoogle Scholar
  15. Cui XF, Tao XR, Xie Y, Fauquet CM et al (2004) A DNAβ associated with tomato yellow leaf curl China virus is required for symptom induction. J Virol 78:13966–13974PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dong JH, Luo YQ, Ding M, Zhang ZK et al (2007) First report of tomato yellow leaf curl China virus infecting kidney bean in China. Plant Pathol 56:342CrossRefGoogle Scholar
  17. Dry I, Krake LR, Rigden JE, Rezaian MA (1997) A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci USA 94:7088–7093PubMedCrossRefGoogle Scholar
  18. Eini O (2017) A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol 51:579–585CrossRefGoogle Scholar
  19. Eini O, Behjatnia SAA (2016) The minimal sequence essential for replication and movement of Cotton leaf curl multan betasatellite DNA by a helper virus in plant cells. Virus Genes 52:679–687PubMedCrossRefGoogle Scholar
  20. Eini O, Dogra S, Selth LA, Dry IB et al (2009) Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA b satellite. Mol Plant-Microbe Interact 22:737–746PubMedCrossRefGoogle Scholar
  21. Fauquet CM, Sawyer S, Idris AM, Brown JK (2005) Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean basins. Phytopathology 95:549–555PubMedCrossRefGoogle Scholar
  22. Fiallo-Olivé E, Martínez-Zubiaur Y, Moriones E, Navas-Castillo J (2012) A novel class of DNA satellites associated with New World begomoviruses. Virology 426:1–6PubMedCrossRefGoogle Scholar
  23. Fiallo-Olivé E, Hamed A, Navas-Castillo J, Moriones E (2013) Cotton leaf curl Gezira alphasatellite associated with tomato leaf curl Sudan virus approaches the expected upper size limit in the evolution of alphasatellites. Virus Res 178:506–510PubMedCrossRefGoogle Scholar
  24. Fiallo-Olivé E, Tovar R, Navas-Castillo J (2016) Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. New Phytol 212:680–692PubMedCrossRefGoogle Scholar
  25. Geetanjali SA, Shilpi S, Mandal B (2013) Natural association of two different betasatellites with sweet potato leaf curl virus in wild morning glory (Ipomoea purpurea) in India. Virus Genes 47:1–5CrossRefGoogle Scholar
  26. Guo XJ, Zhou XP (2006) Molecular characterization of a new begomovirus infecting Sida cordifolia and its associated satellite DNA molecules. Virus Genes 33:279–285PubMedPubMedCentralGoogle Scholar
  27. Ha C, Coombs S, Revill P, Harding R et al (2008a) Molecular characterization of begomoviruses and DNA satellites from Vietnam: additional evidence that the New World geminiviruses were present in the Old World prior to continental separation. J Gen Virol 89:312–326CrossRefGoogle Scholar
  28. Ha C, Revill P, Harding RM, Vu M et al (2008b) Identification and sequence analysis of potyviruses infecting crops in Vietnam. Arch Virol 153:45–60PubMedCrossRefGoogle Scholar
  29. Hameed A, Tahir MN, Amin I, Mansoor S (2017) First report of tomato leaf curl New Delhi virus and a tomato yellow leaf curl Thailand betasatellite causing severe leaf curl disease of potato in Pakistan. Plant Dis 101:1065CrossRefGoogle Scholar
  30. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788CrossRefGoogle Scholar
  31. Harimalala M, Bruyn A, Hoareau M, Andrianjaka A et al (2013) Molecular characterization of a new alphasatellite associated with a cassava mosaic geminivirus in Madagascar. Arch Virol 158(8):1–4CrossRefGoogle Scholar
  32. Hassan I, Orílio AF, Fiallo-Olivé E, Briddon RW et al (2016) Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae). Sci Rep 6:30204PubMedPubMedCentralCrossRefGoogle Scholar
  33. Huang JF, Zhou XP (2006) Molecular characterization of two distinct begomoviruses from Ageratum conyzoides and Malvastrum coromandelianum in China. J Phytopathol 154:648–653CrossRefGoogle Scholar
  34. Idris AM, Shahid MS, Briddon RW, Khan AJ et al (2011) An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. J Gen Virol 92:706–717PubMedCrossRefPubMedCentralGoogle Scholar
  35. Iqbal Z, Sattar MN, Kvarnheden A, Mansoor S et al (2012) Effects of the mutation of selected genes of Cotton leaf curl Kokhran virus on infectivity, symptoms and the maintenance of Cotton leaf curl Multan betasatellite. Virus Res 169:107–116PubMedCrossRefGoogle Scholar
  36. Iqbal Z, Shafiq M, Ali I, Mansoor S et al (2017) Maintenance of Cotton leaf curl Multan betasatellite by tomato leaf curl New Delhi virus—analysis by mutation. Front Plant Sci 8:2208PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jose J, Usha R (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA b satellite with a begomovirus. Virology 305:310–317CrossRefGoogle Scholar
  38. Jyothsna P, Haq QMI, Singh P, Sumiya KV et al (2013) Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Appl Microbiol Biotechnol 97:5457–5471PubMedCrossRefGoogle Scholar
  39. Kaliappan K, Choudhury NR, Suyal G, Mukherjee SK (2011) A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J 26(3):1142–1160PubMedCrossRefGoogle Scholar
  40. Kassanis B (1962) Properties and behaviour of a virus depending for its multiplication on another. Microbiology 27:477–488Google Scholar
  41. Kharazmi S, Behjatnia SAA, Hamzehzarghani H, Niazi A (2012) Cotton leaf curl Multan betasatellite as a plant gene delivery vector trans-activated by taxonomically diverse geminiviruses. Arch Virol 157:1269–1279PubMedCrossRefGoogle Scholar
  42. Kon T, Sharma P, Ikegami M (2007) Suppressor of RNA silencing encoded by the monopartite tomato leaf curl Java begomovirus. Arch Virol 152:1273–1282PubMedCrossRefGoogle Scholar
  43. Kumar J, Kumar A, Roy J, Tuli R et al (2010) Identification and molecular characterization of begomovirus and associated satellite DNA molecules infecting Cyamopsis tetragonoloba. Virus Genes 41:118–125PubMedCrossRefGoogle Scholar
  44. Kumar J, Singh S, Kumar A, Khan J et al (2013) Detection and characterization of a new betasatellite: variation in disease symptoms of tomato leaf curl Pakistan virus-India due to associated betasatellite. Arch Virol 158:257–261PubMedCrossRefGoogle Scholar
  45. Kumar J, Kumar J, Singh SP, Tuli R (2014) Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease. J Virol 88:7093–7104PubMedPubMedCentralCrossRefGoogle Scholar
  46. Laufs J, Schumacher S, Geisler N, Jupin I et al (1995) Identification of the nicking tyrosine of geminivirus rep protein. FEBS Lett 377:258–262PubMedCrossRefGoogle Scholar
  47. Leke W, Kvarnheden A, Ngane E, Titanji V et al (2011) Molecular characterization of a new begomovirus and divergent alphasatellite from tomato in Cameroon. Arch Virol 156:925–928PubMedCrossRefGoogle Scholar
  48. Leke WN, Brown JK, Ligthart ME, Sattar N et al (2012) Ageratum conyzoides: a host to a unique begomovirus disease complex in Cameroon. Virus Res 163:229–237PubMedCrossRefGoogle Scholar
  49. Leke WN, Sattar MN, Ngane EB, Ngeve JM et al (2013) Molecular characterization of begomoviruses and DNA satellites associated with okra leaf curl disease in Cameroon. Virus Res 174:116–125PubMedCrossRefGoogle Scholar
  50. Li J, Zhou X (2010) Molecular characterization and experimental host-range of two begomoviruses infecting Clerodendrum cyrtophyllum in China. Virus Genes 41:1–10CrossRefGoogle Scholar
  51. Li ZH, Xie Y, Zhou XP (2005) Tobacco curly shoot virus DNA b is not necessary for infection but intensifies symptoms in a host-dependent manner. Phytopathology 95:902–908PubMedCrossRefGoogle Scholar
  52. Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D et al (2016) Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae) – definition of a distinct class of begomovirus-associated satellites. Front Microbiol 7:162PubMedPubMedCentralCrossRefGoogle Scholar
  53. Mansoor S, Khan SH, Bashir A, Saeed M et al (1999) Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190–199CrossRefGoogle Scholar
  54. Mansoor S, Briddon RW, Zafar Y, Stanley J (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134CrossRefGoogle Scholar
  55. Marwal A, Kumar Sahu A, Gaur RK (2013a) Molecular characterization of begomoviruses and DNA satellites associated with a new host Spanish flag (Lantana camara) in India. ISRN Virol 2013:5Google Scholar
  56. Marwal A, Sahu A, Choudhary D, Gaur RK (2013b) Complete nucleotide sequence of a begomovirus associated with satellites molecules infecting a new host Tagetes patula in India. Virus Genes 47:1–5CrossRefGoogle Scholar
  57. Mayo MA, Leibowitz MJ, Palukaitis P, Scholthof K-BG et al (2005) Satellites. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) VIIIth report of the International Committee on Taxonomy of Viruses. Virus taxonomy. Elsevier/Academic Press, London, pp 1163–1169Google Scholar
  58. Mubin M, Briddon RW, Mansoor S (2009) Complete nucleotide sequence of chili leaf curl virus and its associated satellites naturally infecting potato in Pakistan. Arch Virol 154:365–368PubMedCrossRefGoogle Scholar
  59. Mubin M, Shahid MS, Tahir MN, Briddon RW et al (2010) Characterization of begomovirus components from a weed suggests that begomoviruses may associate with multiple distinct DNA satellites. Virus Genes 40:452–457PubMedCrossRefGoogle Scholar
  60. Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832PubMedCrossRefGoogle Scholar
  61. Nawaz-ul-Rehman MS, Nahid N, Mansoor S, Briddon RW et al (2010) Post-transcriptional gene silencing suppressor activity of the alpha-rep of non-pathogenic alphasatellites associated with begomoviruses. Virology 405:300–308PubMedCrossRefGoogle Scholar
  62. Nehra C, Gaur RK (2014) Molecular characterization of Chilli leaf curl viruses infecting new host plant Petunia hybrida in India. Virus Genes 50:1–5Google Scholar
  63. Ogawa T, Sharma P, Ikegami M (2008) The begomoviruses Honeysuckle yellow vein mosaic virus and tobacco leaf curl Japan virus with DNAb satellites cause yellow dwarf disease of tomato. Virus Res 137:235–244PubMedCrossRefGoogle Scholar
  64. Packialakshmi R, Srivastava N, Girish K, Usha R (2010) Molecular characterization of a distinct begomovirus species from Vernonia cinerea and its associated DNA-β using the bacteriophage Φ29 DNA polymerase. Virus Genes 41:135–143PubMedCrossRefGoogle Scholar
  65. Palukaitis P, Rezaian A, García-Arenal F (2008) Satellite nucleic acids and viruses. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology. Academic Press, Oxford, pp 526–535CrossRefGoogle Scholar
  66. Paprotka T, Metzler V, Jeske H (2010) The first DNA 1-like a satellites in association with New World begomoviruses in natural infections. Virology 404:148–157PubMedCrossRefGoogle Scholar
  67. Pilartz M, Jeske H (2003) Mapping of abutilon mosaic geminivirus minichromosomes. J Virol 77:10808–10818PubMedPubMedCentralCrossRefGoogle Scholar
  68. Qazi J, Amin I, Mansoor S, Iqbal J et al (2007) Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Res 128:135–139PubMedCrossRefGoogle Scholar
  69. Qing L, Zhou X (2009) Trans-replication of, and competition between, DNA β satellites in plants inoculated with tomato yellow leaf curl China virus and tobacco curly shoot virus. Phytopathology 99:716–720PubMedCrossRefGoogle Scholar
  70. Rathore S, Bhatt B, Yadav B, Kale R et al (2014) A new begomovirus species in association with betasatellite causing tomato leaf curl disease in Gandhinagar, India. Plant Dis 98:428–428PubMedCrossRefGoogle Scholar
  71. Romay G, Lecoq H, Desbiez C (2014) Melon chlorotic mosaic virus and associated alphasatellite from Venezuela: genetic variation and sap transmission of a begomovirus-satellite complex. Plant Pathol 64(5):1224–1234CrossRefGoogle Scholar
  72. Rosario K, Marr C, Varsani A, Kraberger S et al (2016) Begomovirus-associated satellite DNA diversity captured through vector-enabled metagenomic (VEM) surveys using whiteflies (Aleyrodidae). Viruses 8:36PubMedCentralCrossRefPubMedGoogle Scholar
  73. Saeed M (2010) Tomato leaf curl New Delhi virus DNA a component and Cotton leaf curl Multan betasatellite can cause mild transient symptoms in cotton. Acta Virol 54:317–318PubMedCrossRefGoogle Scholar
  74. Saeed M, Zafar Y, Randles JW, Rezaian MA (2007) A monopartite begomovirus-associated DNA b satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol 88:2881–2889PubMedCrossRefGoogle Scholar
  75. Saeed ST, Khan A, Kumar B, Ajayakumar PV et al (2014) First report of Chilli leaf curl India virus infecting Mentha spicata (Neera) in India. Plant Dis 98:164–164PubMedCrossRefGoogle Scholar
  76. Sattar MN, Iqbal Z, Tahir MN, Ullah S (2017) The prediction of a new CLCuD epidemic in the Old World. Front Microbiol 8:631PubMedPubMedCentralCrossRefGoogle Scholar
  77. Saunders K (2008) Analysis of geminivirus DNA replication by 2-D gel. In: Gary D, Foster IEJ, Hong Y, Nagy PD (eds) Plant virology protocols, pp 135–143CrossRefGoogle Scholar
  78. Saunders K, Stanley J (1999) A nanovirus-like component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152CrossRefGoogle Scholar
  79. Saunders K, Bedford ID, Briddon RW, Markham PG et al (2000) A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci USA 97:6890–6895PubMedCrossRefGoogle Scholar
  80. Saunders K, Bedford ID, Stanley J (2002) Adaptation from whitefly to leafhopper transmission of an autonomously-replicating nanovirus-like DNA component associated with ageratum yellow vein disease. J Gen Virol 83:909–915CrossRefGoogle Scholar
  81. Saunders K, Norman A, Gucciardo S, Stanley J (2004) The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 324:37–47CrossRefGoogle Scholar
  82. Senanayake DMJB, Jayasinghe JEARM, Shilpi S, Wasala SK et al (2013) A new begomovirus–betasatellite complex is associated with chilli leaf curl disease in Sri Lanka. Virus Genes 46:128–139PubMedCrossRefGoogle Scholar
  83. Shahid M, Ikegami M, Waheed A, Briddon R et al (2014) Association of an alphasatellite with tomato yellow leaf curl virus and ageratum yellow vein virus in Japan is suggestive of a recent introduction. Viruses 6:189–200PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sharma P, Matsuda N, Bajet NB, Ikegami M (2011) Molecular analysis of new isolates of tomato leaf curl Philippines virus and an associated betasatellite occurring in the Philippines. Arch Virol 156:305–312PubMedCrossRefGoogle Scholar
  85. She X, He Z, Yin G, Du Z et al (2015) A new alphasatellite molecule associated with Ageratum yellow vein China virus in the Philippines. J Phytopathol 163:54–57CrossRefGoogle Scholar
  86. Shelly S, Lukinova N, Bambina S, Berman A et al (2009) Autophagy plays an essential anti-viral role in Drosophila against vesicular stomatitis virus. Immunity 30:588–598PubMedPubMedCentralCrossRefGoogle Scholar
  87. Shih S, Kumar S, Tsai W, Lee L et al (2009) Complete nucleotide sequences of okra isolates of Cotton leaf curl Gezira virus and their associated DNA-β from Niger. Arch Virol 154:369–372PubMedCrossRefGoogle Scholar
  88. Singh M, Singh K, Haq Q, Mandal B et al (2011) Molecular characterization of tobacco leaf curl Pusa virus, a new monopartite Begomovirus associated with tobacco leaf curl disease in India. Virus Genes 43:1–11CrossRefGoogle Scholar
  89. Singh M, Haq QMR, Mandal B, Varma A (2012) Evidence of the association of radish leaf curl virus with tobacco yellow leaf curl disease in Bihar, India. Indian J Virol 23:64–69PubMedPubMedCentralCrossRefGoogle Scholar
  90. Srivastava A, Raj S, Kumar S, Snehi S (2013) New record of Papaya leaf curl virus and Ageratum leaf curl beta satellite associated with yellow vein disease of aster in India. New Dis Rep 28(6).  https://doi.org/10.5197/j.2044-0588.2013.028.006 CrossRefGoogle Scholar
  91. Srivastava A, Jaidi M, Kumar S, Raj SK et al (2015) Association of Papaya leaf curl virus with the leaf curl disease of grain amaranth (Amaranthus cruentus L.) in India. Phytoparasitica 43:97–101CrossRefGoogle Scholar
  92. Tahir M, Haider MS, Briddon RW (2010) Chili leaf curl betasatellite is associated with a distinct recombinant begomovirus, pepper leaf curl Lahore virus, in Capsicum in Pakistan. Virus Res 149:109–114PubMedCrossRefGoogle Scholar
  93. Tahir M, Amin I, Haider S, Mansoor S et al (2015) Ageratum enation virus – a begomovirus of weeds with the potential to infect crops. Viruses 7:647–665PubMedPubMedCentralCrossRefGoogle Scholar
  94. Tao X, Zhou X (2008) Pathogenicity of a naturally occurring recombinant DNA satellite associated with tomato yellow leaf curl China virus. J Gen Virol 89:306–311PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tiwari N, Padmalatha K, Singh V, Haq Q et al (2010) Tomato leaf curl Bangalore virus (ToLCBV): infectivity and enhanced pathogenicity with diverse betasatellites. Arch Virol 155:1343–1347PubMedCrossRefGoogle Scholar
  96. Tiwari N, Sharma PK, Malathi VG (2013) Functional characterization of βC1 gene of Cotton leaf curl Multan betasatellite. Virus Genes 46:111–119PubMedCrossRefGoogle Scholar
  97. Wu P-J, Zhou X-P (2005) Interaction between a nanovirus-like component and the Tobacco curly shoot virus/satellite complex. Acta Biochim Biophys Sin 37:25–31PubMedCrossRefGoogle Scholar
  98. Xie Y, Wu P, Tao X, Zhou X (2004) Identification of a nanovirus-like DNA molecule associated with Tobacco curly shoot virus isolates containing satellite DNA. Prog Nat Sci 14:689–693CrossRefGoogle Scholar
  99. Xiong Q, Guo XJ, Che HY, Zhou XP (2005) Molecular characterization of a distinct begomovirus species and its associated satellite DNA molecule infecting Sida acuta. J Phytopathol 153:264–268CrossRefGoogle Scholar
  100. Yang J-Y, Iwasaki M, Machida C, Machida Y et al (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22:2564–2577PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yang X, Guo W, Ma X, An Q et al (2011a) Molecular characterization of Tomato leaf curl China virus, infecting tomato plants in China, and functional analyses of its associated betasatellite. Appl Environ Microbiol 77:3092–3101PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yang X, Xie Y, Raja P, Li S et al (2011b) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7:e1002329PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zhang T, Xu X, Huang C, Qian Y et al (2016) A novel DNA motif contributes to selective replication of a geminivirus-associated betasatellite by a helper virus-encoded replication-related protein. J Virol 90:2077–2089PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–381PubMedCrossRefGoogle Scholar
  105. Zhou X, Xie Y, Tao X, Zhang Z et al (2003) Characterization of DNA b associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84:237–247PubMedCrossRefGoogle Scholar
  106. Zulfiqar A, Zhang J, Cui X, Qian Y et al (2012) A new begomovirus associated with alpha- and betasatellite molecules isolated from Vernonia cinerea in China. Arch Virol 157:189–191PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad N. Sattar
    • 1
  • Zafar Iqbal
    • 2
  • Amir Hameed
    • 3
  1. 1.Department of BiotechnologyCollege of Agriculture and Food Science, King Faisal UniversityAl-HasaKingdom of Saudi Arabia
  2. 2.Central LaboratoriesKing Faisal UniversityAl-HasaKingdom of Saudi Arabia
  3. 3.Department of Bioinformatics & BiotechnologyGovernment College University (GCU)FaisalabadPakistan

Personalised recommendations