Advertisement

Geminiviruses pp 137-145 | Cite as

Geminivirus–Vector Relationship

  • Nicolas BejermanEmail author
Chapter

Abstract

Geminiviruses are the most abundant plant viruses. This group of ssDNA viruses infects a wide range of hosts including weeds, ornamentals, as well as economically important crops and is widely distributed on the planet Earth. Geminiviruses cause some of the most damaging and economically important diseases of crop plants. This chapter summarizes biological and molecular aspects of the relationships between geminiviruses and their vectors.

Keywords

Transmission Vectors Geminiviruses Relationships 

References

  1. Bahder BW, Zalom FG, Jayanth M, Sudarshana MR (2016) Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus as a vector of Grapevine red blotch-associated virus. Phytopathology 106(10):1223–1230CrossRefGoogle Scholar
  2. Briddon RW, Bedford ID, Tsai JH, Markham PG (1996) Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. Virology 219:3387–3394CrossRefGoogle Scholar
  3. Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. Adv Bot Res 36:65–100CrossRefGoogle Scholar
  4. Czosnek H, Ghanim M (2012) Back to basics: are begomoviruses whitefly pathogens? J Integr Agric 11:225–234CrossRefGoogle Scholar
  5. Czosnek H, Ghanim M, Rubinstein G, Morin S, Fridman V, Zeidan M (2001) Whiteflies: vectors, and victims (?), of geminiviruses. Adv Virus Res 57:291–322CrossRefGoogle Scholar
  6. Firdaus S, Vosman B, Hidayati N, Jaya Supena ED et al (2013) The Bemisia tabaci species complex: additions from different parts of the world. Insect Sci 20:723–733CrossRefGoogle Scholar
  7. Ghanim M (2014) A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res 186:47–54CrossRefGoogle Scholar
  8. Gotz M, Popovski S, Kollenberg M, Gorovits R et al (2012) Implication of Bemisia tabaci heat shock protein 70 in begomovirus-whitefly interactions. J Virol 86:13241–13252CrossRefGoogle Scholar
  9. Gray S, Cilia M, Ghanim M (2014) Circulative, “nonpropagative” virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 89:141–199CrossRefGoogle Scholar
  10. Hariton Shalev A, Sobol I, Ghanim M, Liu SS, Czosnek H (2016) The whitefly Bemisia tabaci knottin-1 gene is implicated in regulating the quantity of tomato yellow leaf curl virus ingested and transmitted by the insect. Viruses 8:205CrossRefGoogle Scholar
  11. Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359CrossRefGoogle Scholar
  12. Hull R (2014) Plant to plant movement. In: Hull R (ed) Plant virology. Academic, London, pp 669–751 CrossRefGoogle Scholar
  13. Kanakala S, Ghanim M (2016) Implication of the whitefly Bemisia tabaci cyclophilin B protein in the transmission of tomato yellow leaf curl virus. Front Plant Sci 7:1702CrossRefGoogle Scholar
  14. Kliot A, Cilia M, Czosnek H, Ghanim M (2014) Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. J Virol 88:5652–5660CrossRefGoogle Scholar
  15. Kollenberg M, Winter S, Götz M (2014) Quantification and localization of Watermelon chlorotic stunt virus and tomato yellow leaf curl virus (Geminiviridae) in populations of Bemisia tabaci (Hemiptera, Aleyrodidae) with differential virus transmission characteristics. PLoS One 9:e111968CrossRefGoogle Scholar
  16. Li R, Weldegergis BT, Li J, Jung C et al (2014) Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008CrossRefGoogle Scholar
  17. Luan JB, Li JM, Varela N, Wang YL et al (2011) Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals their relationship of coevolved adaptations. J Virol 85:3330–3340CrossRefGoogle Scholar
  18. Luan JB, Yao DM, Zhang T, Walling LL et al (2013) Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett 16:390–398CrossRefGoogle Scholar
  19. Luan JB, Wang XW, Colvin J, Liu SS (2014) Plant-mediated whitefly-begomovirus interactions: research progress and future prospects. Bull Entomol Res 104:267–276CrossRefGoogle Scholar
  20. Navas-Castillo J, Lopez-Moya JJ, Aranda MA (2014) Whitefly-transmitted RNA viruses that affect intensive vegetable production. Ann Appl Biol 165:155–171CrossRefGoogle Scholar
  21. Pan L, Chen Q, Zhao J, Guo T et al (2017) Clathrin-mediated endocytosis is involved in tomato yellow leaf curl virus transport across the midgut barrier of its whitefly vector. Virology 502:152–159CrossRefGoogle Scholar
  22. Polston JE, De Barro P, Boykin LM (2014) Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manag Sci 70:1547–1552CrossRefGoogle Scholar
  23. Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR (2017) Geminiviruses and plant hosts: a closer examination of the molecular arms race. Viruses 9:256CrossRefGoogle Scholar
  24. Rana VP, Popli S, Saurav GK, Raina HS et al (2016) Bemisia tabaci midgut protein interacts with begomoviruses and plays a role in virus transmission. Cell Microbiol 18:663–678CrossRefGoogle Scholar
  25. Rosen R, Kanakala S, Kliot A et al (2015) Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol 15:1–8CrossRefGoogle Scholar
  26. Roumagnac P, Granier M, Bernardo P, Deshoux M, Ferdinand R, Galzi S et al (2015) Alfalfa leaf curl virus: an aphid-transmitted geminivirus. J Virol 89:9683–9688CrossRefGoogle Scholar
  27. Varsani A, Navas-Castillo J, Moriones E, Hernandez-Zepeda C, Idris A, Brown JK et al (2014) Establishment of three new genera in the family Geminiviridae: becurtovirus, eragrovirus and turncurtovirus. Arch Virol 159:2193–2203CrossRefGoogle Scholar
  28. Vyskočilová S, Tek Tay W, van Brunschot S, Seal S, Colvin J (2018) An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci Rep 8:10886CrossRefGoogle Scholar
  29. Wang YJ, Mao QZ, Liu WW, Mar TT et al (2014) Localization and distribution of wheat dwarf virus in its vector leafhopper, Psammotettix alienus. Phytopathology 104:897–904CrossRefGoogle Scholar
  30. Wang Z-Z, Shi M, Huang Y-C, Wang X-W, Stanley D, Chen X-X (2016) A peptidoglycan recognition protein acts in whitefly (Bemisia tabaci) immunity and involves in Begomovirus acquisition. Sci Rep 6:37806CrossRefGoogle Scholar
  31. Wei J, He YZ, Guo Q, Guo T et al (2017) Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc Natl Acad Sci U S A 114:201701720CrossRefGoogle Scholar
  32. Whitfield AE, Falk BW, Rotemberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479–480:278–289CrossRefGoogle Scholar
  33. Xia W, Liang Y, Chi Y, Pan LL et al (2018) Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathog 14:e1006866CrossRefGoogle Scholar
  34. Yang Q, Ding B, Zhou X (2017) Geminiviruses and their application in biotechnology. J Integr Agric 16:2761–2771CrossRefGoogle Scholar
  35. Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J et al (2017) ICTV virus taxonomy profile: geminiviridae. J Gen Virol 98:131–133CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)CórdobaArgentina

Personalised recommendations