Advertisement

Geminivirus Occurrence in Australia, China, Europe, and the Middle Eastern Countries

  • Adel Ali Mohammed Al Shihi
Chapter

Abstract

Geminiviruses (family: Geminiviridae) are plant pathogenic viruses with single-stranded DNA (ssDNA) genome. Geminiviruses are classified into nine genera: Begomovirus, Mastrevirus, Curtovirus, Becurtovirus, Topocuvirus, Turncurtovirus, Capulavirus, Grablovirus, and Eragrovirus. Begomoviruses constitute the largest number of viruses in Geminiviridae family infecting most economically important crops in Australia, China, Europe, and the Middle East countries. Crops that have been infected with begomoviruses belong to the families, Malvaceae (cotton and okra), Cucurbitaceae (melon, watermelon, squash, and gourds), Euphorbiaceae (cassava), Solanaceae (tobacco, potato, tomato, and pepper), and Fabaceae (soybean, cowpea, common bean, and mungbean). Mastreviruses infect chickpea and pepper crops in Australia, Oman, Yemen, Jordan, Syria, and Iraq. Becurtoviruses infect some crops like sugar beet and tomato in Iran. Capulaviruses have been recorded in France and Finland infecting Alfalfa and Plantago plants, respectively. The geminiviruses pose a great challenge to the countries by their fast spread and infecting economic crops. Cooperation among these countries in exchanging information and adopting the most up-to-date system in quarantine can prevent further introduction of new viruses into new geographic regions.

Keywords

Geminiviruses Australia China Europe Middle East Crops Quarantine 

References

  1. Accotto GP, Navas-Castillo J, Noris E, Moriones E, Louro D (2000) Typing of Tomato yellow leaf curl viruses in Europe. Eur J Plant Pathol 106:179–186CrossRefGoogle Scholar
  2. Adams MJ, Lefkowitz EJ, King AM, Carstens EB (2013) Recently agreed changes to the international code of virus classification and nomenclature. Arch Virol 158:2633–2639PubMedCrossRefPubMedCentralGoogle Scholar
  3. Akhtar KP, Ahmad M, Shah TM, Atta BM (2011) Transmission of Chickpea chlorotic dwarf virus in chickpea by the leafhopper Orosius albicinctus (distant) in Pakistan—short communication. Plant Prot Sci 47:1–4CrossRefGoogle Scholar
  4. Akhtar S, Khan AJ, Singh AS, Briddon RW (2014) Identification of a disease complex involving a novel monopartite begomovirus with beta- and alphasatellites associated with okra leaf curl disease in Oman. Arch Virol 159:1199–1205PubMedCrossRefPubMedCentralGoogle Scholar
  5. Al Shihi AAM (2017) Status of Begomovirus in Oman. In: Saxena S, Tiwari A (eds) Begomoviruses: occurrence and management in Asia and Africa. Springer, SingaporeGoogle Scholar
  6. Alhudiab K, Alaraby W, Rezk A (2014) Molecular characterization of tomato yellow leaf curl disease associated viruses in Saudi Arabia. Int J Virol 10:192–203CrossRefGoogle Scholar
  7. Al Shihi AA, Khan AJ (2013) Identification of whitefly (Bemicia tabaci Genn.) biotypes and associated bacterial symbionts in Oman. J Plant Sci 8:39–44Google Scholar
  8. Al Shihi AAM, Khan AJ, Akhtar S, Lima ATM, Zerbini FM, Briddon RW (2014) Occurrence of a new recombinant begomovirus species infecting tomato in the Al-Batinah region of Oman. Plant Pathol 63:1177–1184CrossRefGoogle Scholar
  9. Al Shihi AA, Al Sadi AM, Al-Said FA, Ammara U, Deadman ML (2016) Optimizing the floating row cover period to minimize the incidence of tomato yellow leaf curl disease and maximize the yield of tomato. Ann Appl Biol 168:328–336CrossRefGoogle Scholar
  10. Al Shihi AA, Al Sadi AM, Deadman M., Briddon RW, Shahid MS (2017) Identification of a distinct strain of Cotton leaf curl Gezira virus infecting tomato crop in Oman. J Phytopathol (First Published Online: 8 Dec 2017)Google Scholar
  11. Anfoka G, Al-Talb M, Ahmad H, Fatima (2016) A new isolate of tomato yellow leaf curl axarquia virus associated with tomato yellow leaf curl disease in Jordan. J Plant Pathol 98:145–149Google Scholar
  12. Anonymous (1988) Climate atlas of Australia. Bureau of Meteorology, Department of Administrative Services, CanberraGoogle Scholar
  13. Avgelis AD, Roditakis N, Dovas CI, Katis NI, Varveri C, Vassilakos N, Bem F (2001) First report of Tomato yellow leaf curl virus on tomato crops in Greece. Plant Dis 85:678PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ayazpour K (2014) Alphabetic list of plant viruses and viroids reported from Iran. Islamic Azad University, Jahrom, Jahrom BranchGoogle Scholar
  15. Azadvar M, Namvar P, Darini A (2016) Study on control methods of tomato yellow leaf curl disease in Southern Kerman. Final project of Agricultural Extension, Education and Research Organization, Project No. 14–70-16-9152. Iranian Research Institute of Plant Protection (IRIPP) Tehran, TehranGoogle Scholar
  16. Ballantyne B (1968) Summer death of beans. Agric Gaz NSW 79:486–489Google Scholar
  17. Bananej K (2016) An analysis on the status of tomato yellow leaf curl disease. Appl Entomol Phytopathol 84:157–174Google Scholar
  18. Bananej K, Kheyr-Pour A, Ahoonmanesh A (1998) Identification of watermelon chlorotic stunt virus, WmCSV in Iran. In: Proceedings of the 13th Iranian Plant Protection Congress, Karaj, p 194Google Scholar
  19. Bananej K, Kraberger S, Varsani A (2016) Okra enation leaf curl virus in papaya from Iran displaying severe leaf curl symptoms. J Plant Pathol 98:637–639Google Scholar
  20. Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographical regions. Ann Appl Biol 125:311–325CrossRefGoogle Scholar
  21. Behjatnia SAA, Dry IB, Rezaian MA (1998) Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Res 26:925–931CrossRefGoogle Scholar
  22. Bock KR, Guthrie EJ, Woods RD (1974) Purification of maize streak virus and its relationship to viruses associated with streak diseases of sugar cane and Panicum maximum. Ann Appl Biol 77:289–296CrossRefGoogle Scholar
  23. Boulton MI (2002) Functions and interactions of mastrevirus gene products. Physiol Mol Plant Pathol 60:243–255CrossRefGoogle Scholar
  24. Briddon RW, Stanley J (2006) Sub-viral agents associated with plant-infecting single-stranded DNA viruses. Virology 344:198–210PubMedCrossRefGoogle Scholar
  25. Briddon RW, Lunness P, Bedford ID, Chamberlin LCL, Mesfin T, Markham PG (1996) A streak disease of pearl millet caused by a leafhopper-transmitted geminivirus. Eur J Plant Pathol 102:397–400CrossRefGoogle Scholar
  26. Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243PubMedCrossRefGoogle Scholar
  27. Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N, Siwatch SS, Zafar Y, Abdel-salam AM, Markham PG (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology 324:462–474CrossRefGoogle Scholar
  28. Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Arch Virol 153:763–781PubMedCrossRefPubMedCentralGoogle Scholar
  29. Brown JK (1994) Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worlwide. FAO Plant Protect Bull 42:3–32Google Scholar
  30. Brown JK, Bird J (1992) Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean basin. Plant Dis 76:220–225CrossRefGoogle Scholar
  31. Brown JK, Fauquet CM, Briddon RW, Zerbini FM, Moriones E, Navas-Castillo J (2012) Geminivirdae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy-ninth report of the internation committee on taxonomy of viruses. Associated Press, Elsevier Inc., London, pp 351–373Google Scholar
  32. Cui X, Tao X, Xie Y, Fauquet CM, Zhou X (2004) A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol 78:13966–13974PubMedPubMedCentralCrossRefGoogle Scholar
  33. Czosnek H, Laterrot H (1997) A worldwide survey of tomato yellow leaf curl viruses. Arch Virol 142:1391–1406PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dalmon A, Bouyer S, Cailly M (2005) First report of tomato chlorosis virus and tomato infectious chlorosis virus in France. Plant Dis 89:1243PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dry I, Krake LR, Rigden JE, Rezaian MA (1997) A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci USA 94:7088–7093PubMedCrossRefGoogle Scholar
  36. Fanigliulo A, Pacella R, Comes S, Crescenzi A (2008) First record of Tomato yellow leaf curl Sardinia virus (TYLCSV) on pepper in Italy. Commun Agric Appl Biol Sci 73:297–302PubMedPubMedCentralGoogle Scholar
  37. Farzadfar S, Golnaraghi AR, Pourrahim R (2002) Plant viruses of Iran (in English). Saman Co, TehranGoogle Scholar
  38. Fauquet, C. M. Briddon, R. W. Brown, J. K. Moriones, E. Stanley, J. Zerbini, M. Zhou, X. (2008) Geminivirus strain demarcation and nomenclature. Archives of Virology 153 (4):783–821PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fiallo-Olive E, Hamed A, Navas-Castillo J, Moriones E (2013) Cotton leaf curl Gezira alphasatellite associated with Tomato leaf curl Sudan virus approaches the expected upper size limit in the evolution of alphasatellites. Virus Res 178:506–510PubMedCrossRefPubMedCentralGoogle Scholar
  40. Freitas-Astua J, Purcidfull DE, Polston JE, Hiebert E (2002) Traditional and transgenic strategies for controlling tomato-infecting begomovirus. Fitopatol Bras 27:437–449CrossRefGoogle Scholar
  41. Ghanem GAM, Al-Ajlan AM, Abdulsalam KS (2003) A whitefly-transmitted geminivirus infecting bean (Phaseolus vulgaris L.) plants in Saudi Arabia. Egypt J Phytopathol 31:1–15Google Scholar
  42. Gunning RV, Bryne FJ, Conde BD, Connelly MI, Hergstrom K, Devonshire AL (1995) First report of Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. J Aust Entomol Soc 34:116CrossRefGoogle Scholar
  43. Hajimorad MR, Kheyr-Pour A, Alavi V, Ahoonmanesh A, Bahar M, Rezaian MA, Gronenborn B (1996) Identification of whitefly transmitted tomato yellow leaf curl geminivirus from Iran and a survey of its distribution with molecular probes. Plant Pathol 45:418–425CrossRefGoogle Scholar
  44. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106CrossRefGoogle Scholar
  45. Harrison BD (1977) Ecology and control of viruses with soil-inhabiting vectors. Annu Rev Phytopathol 15:331–360CrossRefGoogle Scholar
  46. Helson GAH (1951) The transmission of whiches broom disease of lucerne by the common brown leafhoppers, Orosius argentatus (Evans). Aust J Sci Res B Biol Sci 4:115–124CrossRefGoogle Scholar
  47. Hill (1937) Yellow dwarf of tobacco in Australia, I. symptoms. J Council Sci Indus Res 10:228–230Google Scholar
  48. Hill AV, Mandryk M (1954) A study of virus diseases “big bud” of tomato and “yellow dwarf” of tobacco. Aust J Agric Res 5:617–625CrossRefGoogle Scholar
  49. Hosseinzadeh M, Garivani M (2014) Emerging two distinct groups of the Tomato yellow leaf curl virus-severe strain (TYLCV-IL) variants in Iran. Trakia J Sci 12:149–161Google Scholar
  50. Hur J, Kenneth JB, Lee S, Keith RD (2007) Transcriptional activator elements for Curtovirus C1 expression reside in the 3′ coding region of ORF C1. Mol Cells 23:80–87Google Scholar
  51. Hussain M, Mansoor S, Iram S, Fatima AN, Zafar Y (2005) The nuclear shuttle protein of tomato leaf curl New Delhi virus is a pathogenicity determinant. J Virol 79:4434–4439PubMedPubMedCentralCrossRefGoogle Scholar
  52. Idris AM, Brown JK (2005) Evidence for interspecific-recombination for three monopartite begomoviral genomes associated with the tomato leaf curl disease from Central Sudan. Arch Virol 150:1003–1012PubMedCrossRefPubMedCentralGoogle Scholar
  53. Idris AM, Abdullah NM, Brown JK (2012) Leaf curl diseases of two Solanaceous species in Southwest Arabia are caused by a monopartite begomovirus evolutionarily most closely related to a species from the Nile Basin and unique suite of betasatellites. Virus Res 169:296–300PubMedCrossRefPubMedCentralGoogle Scholar
  54. Idris AM, Al-Saleh Piatek MJ, Al-Shahwan I, Ali S, Brown JK (2014) Viral metagenomics: analysis of begomoviruses by illumina high throughput sequencing. Virus 6:1219–1236CrossRefGoogle Scholar
  55. Isnard M, Granier M, Frutos R, Reynaud B, Peterschmitt M (1998) Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars. J Gen Virol 79:3091–3099CrossRefGoogle Scholar
  56. Jing C, Wang C, Li K, Wu G, Sun X, Qing L (2016) Molecular identification of tobacco leaf curl disease in Sichuan province of China. Virol J 13:4PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kardani GS, Heydarnejad J, Zakiaghl M, Mehrvar M, Kraberger S, Varsani A (2013) Diversity of Beet curly top Iran virus isolated from different hosts in Iran. Virus Genes 46:571–575CrossRefGoogle Scholar
  58. Karthikeyan AS, Vanitharani R, Balaji V, Anuradha S, Thillaichidambaram P, Shivaprasad PV, Parameswari C, Balamani V, Saminathan M, Veluthambi K (2004) Analysis of an isolate of Mungbean yellow mosaic virus (MYMV) with a highly variable DNA B component. Arch Virol 149:1643–1652PubMedCrossRefPubMedCentralGoogle Scholar
  59. Khan AJ, Idris AM, Al-Saady NA, Al-Mahruki MS, Al-Subhi AM, Brown JK (2008) A divergent isolate of Tomato yellow leaf curl virus from Oman with an associated DNA beta satellite: an evolutionary link between Asian and the middle eastern virus-satellite complexes. Virus Genes 36:169–176PubMedCrossRefPubMedCentralGoogle Scholar
  60. Khan AJ, Akhtar S, Briddon RW, Ammara U, Al-Matrooshi AM, Mansoor S (2012) Complete nucleotide sequence of watermelon chlorotic stunt virus originating from Oman. Viruses 4:1169–1181PubMedPubMedCentralCrossRefGoogle Scholar
  61. Khan AJ, Akhtar S, Al-Zaidi AM, Singh AK, Briddon RW (2013) Genetic diversity and distribution of a distinct strain of chili leaf curl virus and associated betasatellite infecting tomato and pepper in Oman. Virus Res 177:87–97PubMedCrossRefPubMedCentralGoogle Scholar
  62. Khan AJ, Akhtar S, Singh AK, Al-Shehi AA, Al-Matrushi AM, Ammara U, Briddon RW (2014) Recent evolution of a novel begomovirus causing tomato leaf curl disease in the Al-Batinah region of Oman. Arch Virol 159:445–455PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kumari SG, Makkouk KM, Attar N (2006) An improved antiserum for sensitive serologic detection of chickpea chlorotic dwarf virus. J Phytopathol 154:129–133CrossRefGoogle Scholar
  64. Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJA, Meredith S (2010) The spread of Tomato Yellow Leaf Curl Virus from the Middle East to the world. PLoS Pathog 6:1–12CrossRefGoogle Scholar
  65. Liu L, Saunders K, Thomas CL, Davies JW, Stanley J (1999) Bean yellow dwarf virus RepA, but not rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 256:270–279PubMedCrossRefPubMedCentralGoogle Scholar
  66. Louro D, Noris E, Veratti F, Accotto GP (1996) First report of Tomato yellow leaf curl virus in Portugal. Plant Dis 80:1079CrossRefGoogle Scholar
  67. Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, Navas-Castillo J (2016) Characterization of non-coding DNA satellites associated with Sweepoviruses (genus Begomovirus, Geminiviridae) – definition of a distinct class of Begomovirus-associated satellites. Front Microbiol 7:162PubMedPubMedCentralCrossRefGoogle Scholar
  68. Luria SE, Darnell JEJ, Baltimore D, Cambell A (1978) General virology. Wiley, New York, pp 1–7Google Scholar
  69. Mansoor S, Khan SH, Bashir A, Saeed M, Zafar Y, Malik KA, Briddon RW, Stanley J, Markham PG (1999) Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190–199CrossRefGoogle Scholar
  70. Mansoor S, Amin I, Briddon RW (2008) Cotton leaf curl disease. In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology, vol 5. Elsevier, Oxford, pp 563–569CrossRefGoogle Scholar
  71. Matthews REF (1979) Classification and nomenclature of viruses. Third report of the international committee on taxonomy of viruses. Intervirology 12:132–296CrossRefGoogle Scholar
  72. Mayo MA, Leibowitz MJ, Palukaitis P, Scholthof KBG, Simon AE, Stanley J, Taliansky M (2005) Satellites. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) VIIIth report of the international committee on taxonomy of viruses. Virus taxonomy. Elsevier/Academic Press, London, pp 1163–1169Google Scholar
  73. Meng J, Li Z, Wei M (2012) Molecular identification of the causal agents causing tobacco leaf curl disease in some regions of Guangxi. Plant Prot 2:37–41Google Scholar
  74. Monci F, Sanchez-Campos S, Navas-Castillo J, Moriones E (2002) A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303:317–326PubMedCrossRefPubMedCentralGoogle Scholar
  75. Montasser MS, Al-Sharidah A, Ali NY, Nakhla MK, Farag BL, Maxwell DP (1999) A single DNA component of tomato yellow leaf curl geminivirus causing epidemics in the State of Kuwait. Kuwait J Sci Eng 25:127–142Google Scholar
  76. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134PubMedCrossRefPubMedCentralGoogle Scholar
  77. Moriones E, Arnó J, Accotto GP, Noris E, Cavallarin L (1993) First report of Tomato yellow leaf curl virus in Spain. Plant Dis 77:953CrossRefGoogle Scholar
  78. Mumford DL (1974) Purification of curly top virus. Phytopathology 64:136–142CrossRefGoogle Scholar
  79. Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (1995) Virus taxonomy: sixth report of the international committee on taxonomy of viruses. Springer, New York, p 585Google Scholar
  80. Nagar S, Pedersen TJ, Carrick KM, Hanley-Bowdoin L, Robertson D (1995) A geminivirus induces expression of a host DNA-synthesis protein in terminally differentiated plant-cells. Plant Cell 7:705–719PubMedPubMedCentralGoogle Scholar
  81. Nahid N, Amin I, Mansoor S, Rybicki EP, Van Der Walt E, Briddon RW (2008) Two dicot-infecting mastreviruses (family Geminiviridae) occur in Pakistan. Arch Virol 153:1441–1451CrossRefGoogle Scholar
  82. Padidam M, Beachy RN, Fauquet CM (1995) Classification and identification of geminiviruses using sequence comparisons. J Gen Virol 76:249–263PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pakniat A, Behjatnia SAA, Kharazmi S, Shahbazi M, Izadpanah K (2010) Molecular characterization and construction of an infectious clone of a new strain of Tomato yellow leaf curl virus in southern Iran. Iran J Plant Pathol 46:101–115Google Scholar
  84. Panno S, Lacono G, Davino M, Marchione S, Zappardo V, Bella P, Tomassoli L, Accotto GP, Davino S (2016) First report of Tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy. New Dis Rep 33:6CrossRefGoogle Scholar
  85. Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwal S, Fauquet CM (2001) Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82:655–665PubMedCrossRefPubMedCentralGoogle Scholar
  86. Polston JE, Mcgovern RJ, Brown LG (1999) Introduction of Tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis 83:984–988CrossRefGoogle Scholar
  87. Ramos PL, Guevara-Gonzalez RG, Peral R, Ascencio-Ibañez JT, Polston J, Argüello-Astorga GR, Vega-Arreguín JC, Rivera-Bustamante RF (2003) Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV: implications for the delimitation of cis- and trans-acting replication specificity determinants. Arch Virol 148:1697–1712PubMedCrossRefPubMedCentralGoogle Scholar
  88. Roumagnac P, Granier M, Bernardo P, Deshoux M, Ferdinand R, Galzi S, Fernandez E, Julian C, Abt I, Filloux D, Mesleard F, Varsani A, Blanc S, Martin DP, Peterschmitt M (2015) Alfalfa leaf curl virus: an aphid-transmitted geminivirus. J Virol 89:9683–9688PubMedPubMedCentralCrossRefGoogle Scholar
  89. Saunders K, Stanley J (1999) A nanovirus-like component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152CrossRefGoogle Scholar
  90. Schwinghamer M, Thomas J, Schilg M, Parry J, Dann E, Moore K, Kumari S (2010) Mastreviruses in chickpea (Cicer arietinum) and other dicotyledonous crops and weeds in Queensland and northern New South Wales, Australia. Australas Plant Pathol 39:551–561CrossRefGoogle Scholar
  91. Seal SE, Jeger MJ, Van Den Bosch F, Maramorosch K, Shatkin AJ, Thresh JM (2006) Begomovirus evolution and disease management. Adv Virus Res 67:297–316PubMedCrossRefPubMedCentralGoogle Scholar
  92. Shahbazi M, Behjatnia SAA, Alichi M, Bananej K, Izadpanah K (2010) Identification of Bemisia tabaci biotypes in Iran based on ITS1 region of ribosomal DNA and DNA polymorphism. In: Proceedings of the 19th Iranian Plant Protection Congress, Tehran, Iran, p 551Google Scholar
  93. Shahid MS, Briddon RW, Al-Sadi AM (2017) Identification of Mungbean yellow mosaic Indian virus associated with tomato leaf curl Betasatellite infecting Phaseolus vulgaris in Oman. J Phytopathol 165:204–211CrossRefGoogle Scholar
  94. Sohrab SS (2016a) The role of Corchorus in spreading of Tomato yellow leaf curl virus on tomato in Jeddah, Saudi Arabia. Virusdisease 27:19–26PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sohrab SS, Yasir M, El-Kafrawy SA, Abbas AT, Mousa MAA, Bakhashwain AA (2016b) Association of Tomato leaf curl Sudan virus with leaf curl disease of tomato in Jeddah, Saudi Arabia. Virusdisease 19:1–9Google Scholar
  96. Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, LondonGoogle Scholar
  97. Stonor J, Hart P, Gunther M, DeBarro P, Rezaian M (2003) Tomato leaf curl geminivirus in Australia: occurrence, detection, sequence diversity and host range. Plant Pathol 52:379–388CrossRefGoogle Scholar
  98. Talhouk AMS (1957) Diseases and insects pests of crops in the eastern province of Saudi Arabia. Arabian American Oil Company, Dammam, p 87Google Scholar
  99. Thomas JE, Bowyer JW (1979) Properties of tobacco yellow dwarf and bean summer death viruses. Phytopathology 70:214–217CrossRefGoogle Scholar
  100. Thomas J, Parry J, Schwinghamer M, Dann E (2010) Two novel mastreviruses from chickpea (Cicer arietinum) in Australia. Arch Virol 155:1777–1788PubMedCrossRefPubMedCentralGoogle Scholar
  101. Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164CrossRefGoogle Scholar
  102. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW, Rivera-Bustamante R, Murilo ZF, Martin DP (2017) Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol 162:1819–1831PubMedPubMedCentralCrossRefGoogle Scholar
  103. Xie Y, Wu P, Liu P, Gong H, Zhou X (2010) Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virol J 7:178PubMedPubMedCentralCrossRefGoogle Scholar
  104. Xiong Q, Fan S, Wu J, Zhou X (2007) Ageratum yellow vein China virus is a distinct begomovirus species associated with a DNAβ molecule. Phytopathology 97:405–411PubMedCrossRefPubMedCentralGoogle Scholar
  105. Yazdani-Khameneh S, Golnaraghi AR, Rakhshandehroo F (2013) Report of a new Begomovirus on melon in Iran. New Dis Rep 28:17CrossRefGoogle Scholar
  106. Zhou X, Liu Y, Calvert L, Munoz C, Otim-Nape GW, Robinson DJ, Harrison BD (1997) Evidence that DNA-A of a geminivirus associated with sever cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78:2101–2111CrossRefGoogle Scholar
  107. Zhou XP, Xie Y, Tao XR, Zhang ZK, Li ZH, Fauquet CM (2003) Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84:237–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adel Ali Mohammed Al Shihi
    • 1
  1. 1.Department of Plant ProtectionMinistry of Agriculture and Fisheries WealthMuscatOman

Personalised recommendations