Advertisement

Classification, Taxonomy and Gene Function of Geminiviruses and Their Satellites

  • R. Vinoth KumarEmail author
Chapter

Abstract

The major constraint for the crop productivity throughout the world is due to the diseases caused by viruses. These plant-infecting viruses emerged as an unavoidable limiting factor and are responsible for severe crop losses in all major economically important plants. Among them, the members belonging to the family, Geminiviridae, are the most devastating pathogens that are transmitted by insect vectors. These geminiviruses cause diseases such as chlorotic, dwarf, leaf curl, mosaic, yellow mosaic and yellow vein in monocots and dicots across the tropical and sub-tropical countries. In addition, these geminiviruses use weeds as reservoir for the spread of diseases. Moreover, these viruses encode only a fewer proteins and rely majorly on the host factors for their replication, disease development and spread. This chapter introduces the readers to the classification and taxonomy of geminiviruses, genus/species demarcation thresholds and the nature of genomic component and satellites associated with geminiviral disease complexes. It also discusses the genome organization of viruses grouped into different genera, before giving a glimpse of the important functions of gene products it encode.

Notes

Acknowledgement

The European Commission for granting Erasmus Mundus Action 2 post-doctorate scholarship through the BRAVE project (Grant: 2013-2536/001-001) is acknowledged.

References

  1. Bahder BW, Zalom FG, Jayanth M, Sudarshana MR (2016) Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus as a vector of grapevine red blotch-associated virus. Phytopathology 106:1223–1230PubMedPubMedCentralCrossRefGoogle Scholar
  2. Basu S, Kushwaha NK, Singh AK, Sahu PP, Kumar RV, Chakraborty S (2018) Dynamics of a geminivirus encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. J Exp Bot 69(8):2085–2102PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bhattacharyya D, Prabu G, Kumar RK, Kushwaha NK et al (2015) A geminivirus betasatellite damages structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot 66(19):5881–5895PubMedPubMedCentralCrossRefGoogle Scholar
  4. Briddon RW, Bedford ID, Tsai JH, Markham PG (1996) Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. Virology 219(2):387–394PubMedCrossRefPubMedCentralGoogle Scholar
  5. Briddon RW, Stanley J (2006) Subviral agents associated with plant single stranded DNA viruses. Virology 344:198–210PubMedCrossRefGoogle Scholar
  6. Briddon RW, Heydarnejad J, Khosrowfar F, Massumi H et al (2010) Turnip curly top virus, a highly divergent geminivirus infecting turnip in Iran. Virus Res 152:169–175PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brown JK, Fauquet CM, Briddon RW, Zerbini FM et al (2012) Family Geminiviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy 9th report of the international committee on taxonomy of viruses. Elsevier Academic Press, London, pp 351–373Google Scholar
  8. Brown JK, Zerbini FM, Navas-Castillo J, Moriones E et al (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619CrossRefGoogle Scholar
  9. Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005–5013PubMedCrossRefPubMedCentralGoogle Scholar
  10. Caracuel Z, Lozano-Durán R, Huguet S, Arroyo-Mateos M, Rodríguez-Negrete EA, Bejarano ER (2012) C2 from Beet curly top virus promotes a cell environment suitable for efficient replication of geminiviruses, providing a novel mechanism of viral synergism. New Phytol 194(3):846–858PubMedCrossRefPubMedCentralGoogle Scholar
  11. Castillo AG, Collinet D, Deret S, Kashoggi A, Bejarano ER (2003) Dual interaction of plant PCNA with geminivirus replication accessory protein (REn) and viral replication protein (Rep). Virology 312:381–394PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chakraborty S, Vanitharani R, Chattopadhyay B, Fauquet CM (2008) More virulent recombination and asymmetric synergism between two distinct species of begomoviruses causing tomato leaf curl disease in India. J Gen Virol 89:818–828PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cieniewicz E, Thompson JR, McLane H, Perry KL, Dangl GS et al (2018) Prevalence and genetic diversity of Grabloviruses in free-living Vitis spp. Plant Dis 102(11):2308–2316.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cui X, Li G, Wang D, Hu D, Zhou X (2005) A begomovirus DNA-β encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79:10764–10775PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dong X, van Wezel R, Stanley J, Hong Y (2003) Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J Virol 77:7026–7033PubMedPubMedCentralCrossRefGoogle Scholar
  16. Evans D, Jeske H (1993) DNA B facilitates, but is not essential for, the spread of Abutilon mosaic virus in agroinoculated Nicotiana benthamiana. Virology 194:752–757PubMedCrossRefGoogle Scholar
  17. Fiallo-Olive E, Martínez-Zubiaur Y, Moriones E, Navas-Castillo J (2012) A novel class of DNA satellites associated with New World begomoviruses. Virology 426(1):1–6PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fiallo-olive E, Tovar R, Navas-castillo J (2016) Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. New Phytol 212(3):680–692PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gnanasekaran P, Kumar RK, Bhattacharyya D, Kumar RV, Chakraborty S (2019) Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol Plant Pathol 20(7):1019–1033PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788CrossRefGoogle Scholar
  22. Harrison BD, Barker H, Bock KR, Guthrie EJ, Meredith G, Atkinson M (1977) Plant viruses with circular single-stranded DNA. Nature 270:760–762CrossRefGoogle Scholar
  23. Hassan I, Orílio A, Fiallo-Olive E, Briddon RW, Navas-Castillo J (2016) Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae). Sci Rep 6:30204PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hehnle S, Wege C, Jeske H (2004) Interaction of DNA with the movement proteins of geminiviruses revisited. J Virol 78:7698–7706PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hernandez-Zepeda C, Varsani A, Brown JK (2013) Intergeneric recombination between a new, spinach-infecting curtovirus and a new geminivirus belonging to the genus Becurtovirus: first New World exemplar. Arch Virol 158:2245–2254PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hesketh EL, Saunders K, Fisher C, Potze J, Stanley J, Lomonossoff GP, Ranson NA (2018) The 3.3 Å structure of a plant geminivirus using cryo-EM. Nat Commun 9(1):2369PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hormuzdi SG, Bisaro DM (1995) Genetic analysis of Beet curly top virus: examination of the roles of L2 and L3 genes in viral pathogenesis. Virology 206:1044–1054PubMedCrossRefPubMedCentralGoogle Scholar
  28. Idris AM, Shahid MS, Briddon RW, Khan AJ, Zhu JK, Brown JK (2011) An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. J Gen Virol 92:706–717PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20:3279–3285PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ismayil A, Haxim Y, Wang Y, Li H, Qian L et al (2018) Cotton leaf curl Multan virus C4 protein suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM synthetase. PLoS Pathog 14(8):e1007282PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jeske H (2009) Geminiviruses. Curr Top Microbiol Immunol 331:185–226PubMedPubMedCentralGoogle Scholar
  32. Jia Q, Liu N, Xie K, Dai Y, Han S et al (2016) CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. PLoS Pathog 12(6):e1005668PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kammann M, Schalk HJ, Matzeit V, Schaefer S, Schell J, Gronenborn B (1991) DNA replication of Wheat dwarf virus, a geminivirus, requires two cis-acting signals. Virology 184:786–790PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kraberger S, Thomas JE, Geering AD, Dayaram A, Stainton D et al (2012) Australian monocot-infecting mastrevirus diversity rivals that in Africa. Virus Res 169:127–136PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kraberger S, Harkins GW, Kumari SG, Thomas JE, Schwinghamer MW et al (2014) Evidence that dicot-infecting mastreviruses are particularly prone to inter-species recombination and have likely been circulating in Australia for longer than in Africa and the Middle East. Virology 444:282–291CrossRefGoogle Scholar
  36. Krenz B, Thompson JR, Fuchs M, Perry KL (2012) Complete genome sequence of a new circular DNA virus from grapevine. J Virol 86:7715PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kumar RV, Chakraborty S (2018) Evolution and emergence of Geminiviruses: reasons and consequences. In: Gaur RK, SMP K, Dorokhov YL (eds) Plant viruses: diversity, interaction and management. CRC Press, Boca Raton, pp 97–116CrossRefGoogle Scholar
  38. Kumar J, Kumar J, Singh SP, Tuli R (2014) Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease. J Virol 88:7093–7104PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kumar RV, Singh AK, Singh AK, Yadav T, Basu S et al (2015a) Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J Gen Virol 96:3157–3172CrossRefGoogle Scholar
  40. Kumar V, Mishra SK, Rahman J, Taneja J, Sundaresan G et al (2015b) Mungbean yellow mosaic Indian virus encoded AC2 protein suppresses RNA silencing by inhibiting Arabidopsis RDR6 and AGO1 activities. Virology 486:158–172PubMedCrossRefGoogle Scholar
  41. Kumar RV, Singh D, Singh AK, Chakraborty S (2017) Molecular diversity, recombination and population structure of alphasatellites associated with begomovirus disease complexes. Infect Genet Evol 49:39–47CrossRefGoogle Scholar
  42. Kvarnheden A, Lindblad M, Lindsten K, Valkonen JP (2002) Genetic diversity of wheat dwarf virus. Arch Virol 147:205–216PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y et al (2009) RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J 57:905–917PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lazarowitz SG, Shepherd RJ (1992) Geminiviruses: genome structure and gene function. Crit Rev Plant Sci 11:327–349CrossRefGoogle Scholar
  45. Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci USA 107:2491–2496PubMedCrossRefPubMedCentralGoogle Scholar
  46. Li H, Zeng R, Chen Z, Liu X, Cao Z et al (2018) S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. J Exp Bot 9(18):4459–4468CrossRefGoogle Scholar
  47. Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF et al (2017) The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol 3(1):vex005PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lozano G, Trenado HP, Fiallo-Olive E, Chirinos D, Geraud-Pouey F et al (2016) Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae)—definition of a distinct class of begomovirus-associated satellites. Front Microbiol 7:162PubMedCrossRefPubMedCentralGoogle Scholar
  49. Luna AP, Rodríguez-Negrete EA, Morilla G, Wang L, Lozano-Duran R et al (2017) V2 from a curtovirus is a suppressor of post-transcriptional gene silencing. J Gen Virol 98:2607–2614PubMedCrossRefGoogle Scholar
  50. Mar TB, Mendes IR, Lau D, Fiallo-Olive E, Navas-Castillo J et al (2017) Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: effects on infection and transmission by the whitefly Bemisia tabaci. J Gen Virol 98:1552–1562PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mei Y, Yang X, Huang C, Zhang X, Zhou X (2018) Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη-mediated phosphorylation in Nicotiana benthamiana. PLoS Pathog 14(1):e1006789PubMedCrossRefPubMedCentralGoogle Scholar
  52. Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL (2013) Characterization of a New World monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87(10):5397PubMedPubMedCentralCrossRefGoogle Scholar
  53. Monjane AL, Harkins GW, Martin DP, Lemey P, Lefeuvre P et al (2011) Reconstructing the history of maize streak virus strain a dispersal to reveal diversification hot spots and its origin in southern Africa. J Virol 85:9623–9636PubMedPubMedCentralCrossRefGoogle Scholar
  54. Muhire B, Martin DP, Brown JK, Navas-Castillo J, Moriones E et al (2013) A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol 158:1411–1424PubMedCrossRefPubMedCentralGoogle Scholar
  55. Navas-Castillo J, Fiallo-Olive E, Sanchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248PubMedCrossRefPubMedCentralGoogle Scholar
  56. Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832PubMedCrossRefGoogle Scholar
  57. Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76:925–932PubMedCrossRefPubMedCentralGoogle Scholar
  58. Paprotka T, Metzler V, Jeske H (2010) The first DNA 1-like satellites in association with New World begomoviruses in natural infections. Virology 404:148–157PubMedCrossRefGoogle Scholar
  59. Pascal E, Goodlove PE, Wu LC, Lazarowitz SG (1993) Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5:795–807PubMedPubMedCentralGoogle Scholar
  60. Pasumarthy KK, Choudhury NR, Mukherjee SK (2010) Tomato leaf curl Kerala virus (ToLCKeV) AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1). Virol J 7:128PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ramsell JNE, Boulton MI, Martin DP, Valkonen JPT, Kvarnheden A (2009) Studies on the host range of the barley strain of Wheat dwarf virus using an agroinfectious viral clone. Plant Pathol 58:1161–1169CrossRefGoogle Scholar
  62. Ranjan P, Singh AK, Kumar RV, Basu S, Chakraborty S (2014) Host specific adaptation of diverse betasatellites associated with distinct Indian tomato-infecting begomoviruses. Virus Genes 48:334–342PubMedCrossRefPubMedCentralGoogle Scholar
  63. Razavinejad S, Heydarnejad J (2013) Transmission and natural hosts of Turnip curly top virus. Iran J Plant Pathol 49:27–28Google Scholar
  64. Razavinejad S, Heydarnejad J, Kamali M, Massumi H, Kraberger S, Varsani A (2013) Genetic diversity and host range studies of turnip curly top virus. Virus Genes 46:345–353CrossRefGoogle Scholar
  65. Rodriguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytologist 199:464–475PubMedCrossRefPubMedCentralGoogle Scholar
  66. Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291(1):110–125PubMedCrossRefPubMedCentralGoogle Scholar
  67. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Ann Rev Phytopathol 43:361–394CrossRefGoogle Scholar
  68. Romay G, Chirinos D, Geraud-Pouey F, Desvies C (2010) Association of an atypical alphasatellite with a bipartite New World begomovirus. Arch Virol 155:1843–1847PubMedCrossRefPubMedCentralGoogle Scholar
  69. Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716–727PubMedCrossRefPubMedCentralGoogle Scholar
  70. Rosario K, Padilla-Rodriguez M, Kraberger S, Stainton D, Martin DP et al (2013) Discovery of a novel Mastrevirus and alphasatellite-like circular DNA in dragonflies (Epiprocta) from Puerto Rico. Virus Res 171:231–237PubMedCrossRefPubMedCentralGoogle Scholar
  71. Roumagnac P, Granier M, Bernardo P, Deshoux M, Ferdinand R et al (2015) Alfalfa leaf curl virus: an aphid-transmitted geminivirus. J Virol 89:9683–9688PubMedPubMedCentralCrossRefGoogle Scholar
  72. Saunders K, Stanley J (1999) A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152CrossRefGoogle Scholar
  73. Settlage SB, Miller AB, Hanley-Bowdoin L (1996) Interactions between geminivirus replication proteins. J Virol 70:6790–6795PubMedPubMedCentralGoogle Scholar
  74. Shen QT, Liu Z, Song FM, Xie Q, Hanley-Bowdoin L, Zhou XP (2011) Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. Plant Physiol 157:1394–1406PubMedPubMedCentralCrossRefGoogle Scholar
  75. Shen Q, Hu T, Bao M, Cao L, Zhang H et al (2016) Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a Geminivirus-encoded βC1. Mol Plant 9(6):911–925PubMedCrossRefPubMedCentralGoogle Scholar
  76. Siddiqui K, Mansoor S, Briddon RW, Amin I (2016) Diversity of alphasatellites associated with cotton leaf curl disease in Pakistan. Virol Rep 6:41–52CrossRefGoogle Scholar
  77. Sivalingam PV, Varma A (2012) Role of betasatellite in the pathogenesis of a bipartite begomovirus affecting tomato in India. Arch Virol 157:1081–1092PubMedCrossRefPubMedCentralGoogle Scholar
  78. Soleimani R, Matic S, Taheri H, Behjatnia SAA, Vecchiati M et al (2013) The unconventional geminivirus Beet curly top Iran virus: satisfying Koch’s postulates and determining vector and host range. Ann Appl Biol 162:174–181CrossRefGoogle Scholar
  79. Soto MJ, Gilbertson RL (2003) Distribution and rate of movement of the curtovirus Beet mild curly top virus (Family Geminiviridae) in the beet leafhopper. Phytopathology 93:478–484PubMedCrossRefPubMedCentralGoogle Scholar
  80. Stenger DC, Carbonaro D, Duffus JE (1990) Genomic characterization of phenotypic variants of beet curly top virus. J Gen Virol 71:2211–2215PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331PubMedPubMedCentralGoogle Scholar
  82. Susi H, Laine A-L, Filloux D, Kraberger S, Farkas K et al (2017) Genome sequences of a capulavirus infecting Plantago lanceolata in the Aland archipelago of Finland. Arch Virol 162(7):2041–2045PubMedCrossRefPubMedCentralGoogle Scholar
  83. Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ et al (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527PubMedPubMedCentralCrossRefGoogle Scholar
  84. Varsani A, Shepherd DN, Dent K, Monjane AL, Rybicki EP, Martin DP (2009) A highly divergent South African geminivirus species illuminates the ancient evolutionary history of this family. Virol J 6:36PubMedPubMedCentralCrossRefGoogle Scholar
  85. Varsani A, Navas-Castillo J, Moriones E, Hernandez-Zepeda C, Idris A et al (2014a) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159(8):2193–2203PubMedPubMedCentralCrossRefGoogle Scholar
  86. Varsani A, Martin DP, Navas-Castillo J, Moriones E et al (2014b) Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Arch Virol 159:1873–1882PubMedCrossRefPubMedCentralGoogle Scholar
  87. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E et al (2017) Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol 162:1819–1831PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wang Y, Dang M, Hou H, Mei Y, Qian Y, Zhou X (2014) Identification of an RNA silencing suppressor encoded by a mastrevirus. J Gen Virol 95(9):2082–2088PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wang B, Yang X, Wang Y, Xie Y, Zhou X (2018) Tomato yellow leaf curl virus V2 interacts with host HDA6 to suppress methylation-mediated transcriptional gene silencing in plants. J Virol 92(18);e00036-18Google Scholar
  90. Ward BM, Lazarowitz SG (1999) Nuclear export in plants: use of geminivirus movement proteins for a cell-based export assay. Plant Cell 11(7):1267–1276PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yang X, Xie Y, Raja P, Li S, Wolf JN et al (2011) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus betasatellite infection. PLoS Pathog 7:e1002329PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yazdi HR, Heydarnejad J, Massumi H (2008) Genome characterization and genetic diversity of beet curly top Iran virus: a geminivirus with a novel nonanucleotide. Virus Genes 36:539–545PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ye J, Yang J, Sun Y, Zhao P, Gao S et al (2015) Geminivirus activates ASYMMETRIC LEAVES 2 to accelerate cytoplasmic DCP2-mediated mRNA turnover and weakens RNA silencing in Arabidopsis. PLoS Pathog 11(10):e1005196PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E et al (2017) ICTV virus taxonomy profile: Geminiviridae. J Gen Virol 98:131–133PubMedPubMedCentralCrossRefGoogle Scholar
  95. Zhang T, Xu X, Huang C, Qian Y, Li Z, Zhou X (2015) A novel DNA motif contributes to selective replication of geminivirus-associated betasatellite by a helper virus-encoded replication-related protein. J Virol 90(4):2077–2089PubMedCrossRefPubMedCentralGoogle Scholar
  96. Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–581PubMedCrossRefGoogle Scholar
  97. Zorzatto C, Machado JPB, Lopes KVG, Nascimento KJT, Pereira WA et al (2015) NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 52:679–682CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.National Centre for Biological Sciences (NCBS-TIFR)BengaluruIndia

Personalised recommendations