Comparative Embryology as a Way to Understand Evolution

  • Dian-Han KuoEmail author
Part of the Fascinating Life Sciences book series (FLS)


In the nineteenth century and the first half of the twentieth century, comparative embryology has been indispensable for reconstructing the evolutionary history of Metazoa. The rise of molecular phylogeny and developmental genetics in the last decade of the twentieth century, however, has radically changed the role of comparative embryology in the study of animal evolution. Now, comparative embryology is no longer directly used in building phylogenetic trees, and the role of development in evolution has been recast as the mediator of morphological changes. The new technological developments have enabled investigators to study gene expression patterns and gene functions in embryonic development of many different animal species. By comparing developmental data from different species and reconstructing how developmental mechanisms evolved along the phylogenetic tree, it is now possible to imagine how animal body plans originated and evolved. Therefore, although the role of comparative embryology in evolution research has changed a lot in the past 50 years, it continues to be the forefront of Metazoan evolution research in the twenty-first century.


  1. Abzhanov A, Extavour CG, Groover A, Hodges SA, Hoekstra HE, Kramer EM, Monteiro A (2008) Are we there yet? Tracking the development of new model systems. Trends Genet 24:353–360PubMedCrossRefGoogle Scholar
  2. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Nat Acad Sci U S A 97:4453–4456CrossRefGoogle Scholar
  3. Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garet JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedCrossRefGoogle Scholar
  4. Alwes F, Scholtz G (2014) The early development of the onychopod cladoceran Bythotrephes longimanus (Crustacea, Branchiopoda). Front Zool 11:10PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson DT (1969) On the embryology of the cirripede crustaceans Tetraclita rosea (Krauss), Tetraclita purpurascens (Wood), Chthamalus antennatus (Darwin) and Chamaesipho columna (Spengler) and some considerations of crustacean phylogenetic relationships. Philos Trans R Soc Lond B Biol Sci 256:183–235CrossRefGoogle Scholar
  6. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, OxfordGoogle Scholar
  7. Ankeny RA (2001) The natural history of Caenorhabditis elegans research. Nat Rev Genet 2:474–479PubMedCrossRefGoogle Scholar
  8. Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F (2014) Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 9:e93076PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baker MW, Macagno ER (2000) RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse. Curr Biol 7:1071–1074CrossRefGoogle Scholar
  10. Bigelow MA (1902) The early development of Lepas: a study of cell-lineage and germ-layers. Bull Mus Comp Zool 40:61–144Google Scholar
  11. Bolker JA (1995) Model systems in developmental biology. BioEssays 17:451–455PubMedCrossRefGoogle Scholar
  12. Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangement. Nature 376:163–165PubMedCrossRefGoogle Scholar
  13. Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530:89–93PubMedCrossRefGoogle Scholar
  14. Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485PubMedCrossRefGoogle Scholar
  15. Chen J-N, Fishman MC (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122:3809–3816PubMedGoogle Scholar
  16. Conklin EG (1897) The embryology of Crepidula, a contribution to the cell lineage and early development of some marine gasteropods. J Morphol 13:1–226CrossRefGoogle Scholar
  17. Cornwell W, Nakagawa S (2017) Phylogenetic comparative methods. Curr Biol 27:R333–R336PubMedCrossRefGoogle Scholar
  18. Costello DP, Henley C (1976) Spiralian development: a perspective. Am Zool 16:277–291CrossRefGoogle Scholar
  19. Cuvier G (1817) Le Règne Animal Distribué d’après son Organisation, pour Servir de Base à l’Histoire Naturelle des Animaux et d’Introduction à l’Anatomie Comparée. chez Deterville, libraire, ParisGoogle Scholar
  20. Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  21. Delsman HC (1917) Die Embryonalentwicklung von Balanus balanoides Linn. Tijdschr Ned Dierk Ver 15:419–520Google Scholar
  22. De Robertis EM (2008) Evo-Devo: variations on ancestral themes. Cell 132:185–195PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dunn CW et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedCrossRefGoogle Scholar
  24. Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93PubMedCrossRefGoogle Scholar
  25. Ferguson EL (1996) Conservation of dorsal-ventral patterning in arthropods and chordates. Curr Opin Genet Dev 6:424–431PubMedCrossRefGoogle Scholar
  26. Freeman G, Lundelius JW (1992) Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J Evol Biol 5:205–247CrossRefGoogle Scholar
  27. Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167PubMedCrossRefGoogle Scholar
  28. Gardiner EG (1895) Early development of Polychoerus caudatus, mark. J Morphol 11:155–176CrossRefGoogle Scholar
  29. Geoffroy Saint-Hilaire E, Hilaire É (1822) Philosophie anatomique: des monstruosités humaines. chez l’auteur, ParisGoogle Scholar
  30. Gerberding M, Browne WE, Patel NH (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129:5789–5801PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gilles AF, Averof M (2014) Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 5:43PubMedPubMedCentralCrossRefGoogle Scholar
  32. González-Estévez C, Momose T, Gehring WJ, Saló E (2003) Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Nat Acad Sci U S A 100:14046–14051CrossRefGoogle Scholar
  33. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish - emergence of a new model vertebrate. Nat Rev Genet 3:717–724PubMedCrossRefGoogle Scholar
  34. Gurdon JB (1992) The generation of diversity and pattern in animal development. Cell 68:185–199PubMedCrossRefGoogle Scholar
  35. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65PubMedCrossRefGoogle Scholar
  36. Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643PubMedCrossRefGoogle Scholar
  37. Halder G, Callaerts P, Gehring WJ (1995) New perspectives on eye evolution. Curr Opin Genet Dev 5:602–609PubMedCrossRefGoogle Scholar
  38. Hall BK (1999) Evolutionary developmental biology, 2nd edn. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  39. Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27:507–515PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361PubMedCrossRefGoogle Scholar
  41. Hejnol A, Schnabel R, Scholtz G (2006) A 4D-microscopic analysis of the germ band in the isopod crustacean Porcellio scaber (Malacostraca, Peracarida) - developmental and phylogenetic implications. Dev Genes Evol 216:755–767PubMedCrossRefGoogle Scholar
  42. Henry JQ (2014) Spiralian model systems. Int J Dev Biol 58:389–401PubMedCrossRefGoogle Scholar
  43. Henry JJ, Raff RA (1990) Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Dev Biol 141:55–69PubMedCrossRefGoogle Scholar
  44. Henry JJ, Wray GA, Raff RA (1990) The dorsoventral axis is specified prior to first cleavage in the direct developing sea urchin Heliocidaris erythrogramma. Development 110:875–884PubMedGoogle Scholar
  45. Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220:285–295PubMedCrossRefGoogle Scholar
  46. Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat Rev Genet 8:311–314PubMedCrossRefGoogle Scholar
  47. Jennings HS (1896) The early development of Asplanchna herrickii de Guerne. A contribution to developmental mechanics. Bull Mus Comp Zool 30:1–117Google Scholar
  48. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069PubMedCrossRefGoogle Scholar
  49. Kishi K, Onuma TA, Nishida H (2014) Long-distance cell migration during larval development in the appendicularian, Oikopleura dioica. Dev Biol 395:299–306PubMedCrossRefGoogle Scholar
  50. Klann M, Scholtz G (2014) Early embryonic development of the freshwater shrimp Caridina multidentata (Crustacea, Decapoda, Atyidae). Zoomorphology 133:295–306CrossRefGoogle Scholar
  51. Kohler RE (1993) Drosophila: a life in the laboratory. J Hist Biol 26:281–310PubMedCrossRefGoogle Scholar
  52. Kong J, Lasko P (2012) Translational control in cellular and developmental processes. Nat Rev Genet 13:383–394PubMedCrossRefGoogle Scholar
  53. Koopman P (2001) In situ hybridization to mRNA: from black art to guiding light. Int J Dev Biol 45:619–622PubMedGoogle Scholar
  54. Korzh V, Grunwald D (2001) Nadine Dobrovolsakia-Zavadskaia and the dawn of developmental genetics. BioEssays 23:365–371PubMedCrossRefGoogle Scholar
  55. Lambert JD (2010) Developmental patterns in spiralian embryos. Curr Biol 20:R72–R77PubMedCrossRefGoogle Scholar
  56. Laumer CE et al (2015) Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol 25:2000–2006PubMedCrossRefGoogle Scholar
  57. Lawrence PA (1992) The making of a Fly. Blackwell Science, OxfordGoogle Scholar
  58. Lillie FR (1895) The embryology of the Unionidae. A study in cell-lineage. J Morphol 10:1–100CrossRefGoogle Scholar
  59. Lillie FR (1898) Adaptation in cleavage. Biol Lect 1898:43–66Google Scholar
  60. Lohmann JU, Endl I, Bosch TCG (1999) Silencing of developmental genes in Hydra. Dev Biol 214:211–214PubMedCrossRefGoogle Scholar
  61. Lyons DC, Perry KJ, Lesoway MP, Henry JQ (2012) Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. EvoDevo 3:21PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mead AD (1897) The early development of marine annelids. J Morphol 13:227–327CrossRefGoogle Scholar
  63. Newmark PA, Reddien PW, Cebrià F, Sánchez Alvarado A (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Nat Acad Sci U S A 100:11861–11865CrossRefGoogle Scholar
  64. Nielsen C (2004) Trochophora larvae: cell lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool (Mol Dev Evol) 302B:35–68CrossRefGoogle Scholar
  65. Nielsen C (2005) Trochophora larvae: cell lineages, ciliary bands, and body regions. 2. Other groups and general discussion. J Exp Zool (Mol Dev Evol) 304B:401–447CrossRefGoogle Scholar
  66. Nishiyama A, Fujiwara S (2008) RNA interference by expressing short hairpin RNA in the Ciona intestinalis embryo. Dev Growth Diff 50:521–529CrossRefGoogle Scholar
  67. O’Meara BC (2012) Evolutionary inferences from phylogenies: a review of methods. Annu Rev Ecol Evol Syst 43:267–285CrossRefGoogle Scholar
  68. Panganiban G et al (1997) The origin and evolution of animal appendages. Proc Nat Acad Sci U S A 94:5162–5166CrossRefGoogle Scholar
  69. Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968PubMedCrossRefGoogle Scholar
  70. Pavlopoulos A, Averof M (2005) Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Nat Acad Sci U S A 102:7888–7893CrossRefGoogle Scholar
  71. Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167:737–746PubMedPubMedCentralCrossRefGoogle Scholar
  72. Raff RA, Love AC (2004) Kowalevsky, comparative evolutionary embryology, and the intellectual lineage of Evo-devo. J Exp Zool (Mol Dev Evol) 302B:19–34CrossRefGoogle Scholar
  73. Ronquist F (2004) Bayesian inference of character evolution. Trends Ecol Evol 19:475–481PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rouhana L et al (2013) RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn 242:718–730PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguñà J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:1919–1923PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sasakura Y, Oogai Y, Matsuoka T, Satoh N, Awazu S (2007) Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis. Genome Biol 8:S3PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sawyer RT (1984) Arthropodization in the Hirudinea: evidence for a phylogenetic link with insects and other Uniramia? Zool J Linnean Soc 80:303–322CrossRefGoogle Scholar
  78. Schnabel R, Hutter H, Moerman D, Schnabel H (1997) Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol 184:234–265PubMedCrossRefGoogle Scholar
  79. Stach T, Anselmi C (2015) High-precision morphology: bifocal 4D-microscopy enables the comparison of detailed cell lineages of two chordate species separated for more than 525 million years. BMC Biol 13:113PubMedPubMedCentralCrossRefGoogle Scholar
  80. Stach T, Winter J, Bouquet JM, Chourrout D, Schnabel R (2008) Embryology of a planktonic tunicate reveals traces of sessility. Proc Nat Acad Sci U S A 105:7229–7234CrossRefGoogle Scholar
  81. Tieg OW, Manton SM (1958) The evolution of the Arthropoda. Biol Rev 33:255–333CrossRefGoogle Scholar
  82. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854PubMedCrossRefGoogle Scholar
  83. Treadwell AL (1901) Cytogeny of Podarke obscura Verrill. J Morphol 17:399–487CrossRefGoogle Scholar
  84. Vellutini BC, Martín-Durán JM, Hejnol A (2017) Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 15:33PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wacker SA, Oswald F, Wiedenmann J, Knöchel W (2007) A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev Dyn 236:473–480PubMedCrossRefGoogle Scholar
  86. Wedeen CJ, Weisblat DA (1991) Segmental expression of an engrailed-class gene during early development and neurogenesis in an annelid. Development 113:805–814PubMedGoogle Scholar
  87. Weisblat DA, Sawyer RT, Stent GS (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202:1295–1298PubMedCrossRefGoogle Scholar
  88. Weisblat DA, Zackson SL, Blair SS, Young JD (1980) Cell lineage analysis by intracellular injection of fluorescent tracers. Science 209:1538–1541PubMedCrossRefGoogle Scholar
  89. Willems M et al (2009) Embryonic origins of hull cells in the flatworm Macrostomum lignano through cell lineage analysis: developmental and phylogenetic implications. Dev Genes Evol 219:409–417PubMedCrossRefGoogle Scholar
  90. Wilson EB (1892) A cell-lineage of Nereis. A contribution to the cytogeny of the annelid body. J Morphol 6:361–481CrossRefGoogle Scholar
  91. Wilson EB (1898a) Cell-lineage and ancestral reminiscence. Biol Lect 1898:21–42Google Scholar
  92. Wilson EB (1898b) Considerations on cell-lineage and ancestral reminiscence. Ann N Y Acad Sci 11:1–27CrossRefGoogle Scholar
  93. Winsor MP (1969) Barnacle larvae in the nineteenth century: a case study in taxonomic theory. J Hist Med Allied Sci 24:294–309PubMedCrossRefGoogle Scholar
  94. Winsor MP (1976) Starfish, jellyfish, and the order of life. Yale University Press, New Haven, CTGoogle Scholar
  95. Wolff C, Scholtz G (2006) Cell lineage analysis of the mandibular segment of the amphipod Orchestia cavimana reveals that the crustacean paragnaths are sternal outgrowths and not limbs. Front Zool 3:19PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wray GA, Raff RA (1989) Evolutionary modification of cell lineage in the direct-developing sea urchin Helioidaris erythrogramma. Dev Biol 132:458–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations