Impact of Ultraviolet Processing on Food Composition

  • María LavillaEmail author
  • Amaia Lasagabaster
  • Iñigo Martínez-de-Marañón


Ultraviolet (UV) radiation comprises the wavelength from 100 to 400 nm in the spectrum of electromagnetic waves. Likewise, the ultraviolet spectrum can be distinguished between UV-A (400-315 nm), UV-B (315-280 nm), and UV-C (280-100 nm). Among the complete UV range, the UV-C radiation, and more specifically, the wavelength at 254 nm, has been demonstrated to achieve the highest germicidal effect. Indeed, UV-C radiation has been confirmed to be a useful tool to inactivate bacteria (including spores), viruses, yeast, molds, and parasites. This high effectivity is due to the absorption of this radiation by DNA/RNA and proteins, which provokes a loss of structure and subsequent malfunction. In this chapter, the impact of ultraviolet processing on food constituents was reviewed.


  1. Aguilar, K., Ibarz, R., Garvín, A., & Ibarz, A. (2016). Effect of UV–Vis irradiation on enzymatic activities and the physicochemical properties of nectarine juices from different varieties. LWT - Food Science and Technology, 65, 969–977.CrossRefGoogle Scholar
  2. Anugu, A. K., Yang, W., Shriver, S., Chung, S. Y., & Percival, S. S. (2010). Efficacy of pulsed ultraviolet light in reducing the allergenicity of isolated egg proteins. In Institute of Food Technologists. Chicago, IL.Google Scholar
  3. Arroyo, C., Dorozko, A., Gaston, E., O’Sullivan, M., Whyte, P., & Lyng, J. G. (2017). Light based technologies for microbial inactivation of liquids, bead surfaces and powdered infant formula. Food Microbiology, 67, 49–57.PubMedCrossRefGoogle Scholar
  4. Augusto, P. E. D., Ibarz, R., Garvín, A., & Ibarz, A. (2015). Peroxidase (POD) and polyphenol oxidase (PPO) photo-inactivation in a coconut water model solution using ultraviolet (UV). Food Research International (Ottawa, Ont.), 74, 151–159.CrossRefGoogle Scholar
  5. Baron, C. P., Børresen, T., & Jacobsen, C. (2005). UV treatment of fishmeal: A method to remove dioxins. Journal of Agricultural and Food Chemistry, 53(18), 7091–7097.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Basaran, N., Quintero-Ramos, A., Moake, M. M., Churey, J. J., & Worobo, R. W. (2004). Influence of apple cultivars on inactivation of different strains of Escherichia coli O157:H7 in apple cider by UV irradiation. Applied and Environmental Microbiology, 70(10), 6061–6065.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ben-Yehoshua, S., Rodov, V., Kim, J. J., & Carmeli, S. (1992). Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. Journal of Agricultural and Food Chemistry, 40(7), 1217–1221.CrossRefGoogle Scholar
  8. Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control, 29(1), 82–90.CrossRefGoogle Scholar
  9. Bhat, R., & Karim, A. A. (2009). Ultraviolet irradiation improves gel strength of fish gelatin. Food Chemistry, 113(4), 1160–1164.CrossRefGoogle Scholar
  10. Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry – a critical review. Journal of the Science of Food and Agriculture, 80(6), 637–645.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 167(1), 96–102.PubMedCrossRefGoogle Scholar
  12. Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., García-Valverde, V., Navarro-González, I., & Periago, M. J. (2013). Effects of postharvest UV-C treatment on carotenoids and phenolic compounds of vine-ripe tomatoes. International Journal of Food Science & Technology, 48(8), 1744–1749.CrossRefGoogle Scholar
  13. Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., … Lyng, J. G. (2012). The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food and Bioprocess Technology, 5(2), 680–686.CrossRefGoogle Scholar
  14. Cantos, E., Espín, J. C., & Tomás-Barberán, F. A. (2001). Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: A new “functional” fruit? Journal of Agricultural and Food Chemistry, 49(10), 5052–5058.PubMedCrossRefGoogle Scholar
  15. Cappozzo, J. C., Koutchma, T., & Barnes, G. (2015). Chemical characterization of milk after treatment with thermal (HTST and UHT) and nonthermal (turbulent flow ultraviolet) processing technologies. Journal of Dairy Science, 98(8), 5068–5079.PubMedCrossRefGoogle Scholar
  16. Chen, C., Hu, W., He, Y., Jiang, A., & Zhang, R. (2016). Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology, 111, 126–131.CrossRefGoogle Scholar
  17. Choi, I.-L., Yoo, T. J., & Kang, H.-M. (2015). UV-C treatments enhance antioxidant activity, retain quality and microbial safety of fresh-cut paprika in MA storage. Horticulture, Environment, and Biotechnology, 56(3), 324–329.CrossRefGoogle Scholar
  18. Chung, S.-Y., Yang, W., & Krishnamurthy, K. (2008). Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter. Journal of Food Science, 73(5), C400–C404.PubMedCrossRefGoogle Scholar
  19. Cooper, J. V., Wiegand, B. R., Koc, A. B., Schumacher, L., Grün, I., & Lorenzen, C. L. (2016). RAPID COMMUNICATION: Impact of contemporary light sources on oxidation of fresh ground beef. Journal of Animal Science, 94(10), 4457–4462.PubMedCrossRefGoogle Scholar
  20. Datta, N., Harimurugan, P., & Palombo, E. A. (2015). Ultraviolet and pulsed light technologies in dairy processing. In N. Datta & P. M. Tomasula (Eds.), Emerging dairy processing technologies (pp. 181–204). Wiley-Blackwell. Chichester, West Sussex, UK.Google Scholar
  21. de Oliveira Bottino, F., Rodrigues, B. L., de Nunes Ribeiro, J. D., Lázaro, C. A., & Conte-Junior, C. A. (2016). Effect of UV-C radiation on shelf life of vacuum package Colossoma macropomum x Piaractus mesopotamicus fillets. Procedia Food Science, 7, 13–16.CrossRefGoogle Scholar
  22. de Souza, P. M., & Fernández, A. (2011). Effects of UV-C on physicochemical quality attributes and Salmonella enteritidis inactivation in liquid egg products. Food Control, 22(8), 1385–1392.CrossRefGoogle Scholar
  23. de Souza, P. M., Müller, A., Beniaich, A., Mayer-Miebach, E., Oehlke, K., Stahl, M., … Fernández, A. (2015). Functional properties and nutritional composition of liquid egg products treated in a coiled tube UV-C reactor. Innovative Food Science & Emerging Technologies, 32, 156–164.CrossRefGoogle Scholar
  24. Diao, E., Li, X., Zhang, Z., Ma, W., Ji, N., & Dong, H. (2015). Ultraviolet irradiation detoxification of aflatoxins. Trends in Food Science & Technology, 42(1), 64–69.CrossRefGoogle Scholar
  25. Díaz, O., Candia, D., & Cobos, Á. (2017). Whey protein film properties as affected by ultraviolet treatment under alkaline conditions. International Dairy Journal, 73, 84–91.CrossRefGoogle Scholar
  26. Du, W.-X., Avena-Bustillos, R. J., Breksa, A. P., & McHugh, T. H. (2012). Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chemistry, 134(4), 1862–1869.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Du, W.-X., Avena-Bustillos, R. J., Breksa, A. P., & McHugh, T. H. (2014). UV-B light as a factor affecting total soluble phenolic contents of various whole and fresh-cut specialty crops. Postharvest Biology and Technology, 93, 72–82.CrossRefGoogle Scholar
  28. EFSA. (2005). Opinion of the scientific panel on biological hazards on the request from the commission related to the microbiological risks on washing of table eggs. The EFSA Journal, 269, 1–39. Scholar
  29. EFSA. (2015). Scientific opinion on the safety of UV-treated bread as a novel food. The EFSA Journal, 13(7), 4148–4164. Scholar
  30. EFSA. (2016). Safety of UV-treated milk as a novel food pursuant to Regulation (EC) No 258/97. The EFSA Journal, 14(1), 4370–4384. Scholar
  31. European Commission. (1997). Regulation EC No. 258/97 of the European Parliament and of the Council concerning novel foods and novel food ingredients. (No. Official Journal L 043) (pp. 1–9). European Commission. Retrieved from
  32. Falguera, V., Pagán, J., & Ibarz, A. (2011). Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT - Food Science and Technology, 44(1), 115–119.CrossRefGoogle Scholar
  33. Fan, X., Huang, R., & Chen, H. (2017). Application of ultraviolet C technology for surface decontamination of fresh produce. Trends in Food Science & Technology, 70, 9–19.CrossRefGoogle Scholar
  34. Fava, J., Hodara, K., Nieto, A., Guerrero, S., Alzamora, S. M., & Castro, M. A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Research International, 44(9), 2938–2948.CrossRefGoogle Scholar
  35. Fiocchi, A., Schünemann, H. J., Brozek, J., Restani, P., Beyer, K., Troncone, R., … Lockey, R. F. (2010). Diagnosis and rationale for action against cow’s milk allergy (DRACMA): A summary report. The Journal of Allergy and Clinical Immunology, 126(6), 1119–1128.e12.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fonseca, J. M., & Rushing, J. W. (2006). Effect of ultraviolet-C light on quality and microbial population of fresh-cut watermelon. Postharvest Biology and Technology, 40(3), 256–261.CrossRefGoogle Scholar
  37. Formica-Oliveira, A. C., Martínez-Hernández, G. B., Díaz-López, V., Artés, F., & Artés-Hernández, F. (2017). Effects of UV-B and UV-C combination on phenolic compounds biosynthesis in fresh-cut carrots. Postharvest Biology and Technology, 127, 99–104.CrossRefGoogle Scholar
  38. García Carrillo, M., Ferrario, M., & Guerrero, S. (2017). Study of the inactivation of some microorganisms in turbid carrot-orange juice blend processed by ultraviolet light assisted by mild heat treatment. Journal of Food Engineering, 212, 213–225.CrossRefGoogle Scholar
  39. Garcia Loredo, A. B., Guerrero, S. N., & Alzamora, S. M. (2013). Impact of combined ascorbic acid/CaCl2, hydrogen peroxide and ultraviolet light treatments on structure, rheological properties and texture of fresh-cut pear (William var.). Journal of Food Engineering, 114(2), 164–173.CrossRefGoogle Scholar
  40. Gautam, D., Umagiliyage, A. L., Dhital, R., Joshi, P., Watson, D. G., Fisher, D. J., & Choudhary, R. (2017). Nonthermal pasteurization of tender coconut water using a continuous flow coiled UV reactor. LWT - Food Science and Technology, 83, 127–131.CrossRefGoogle Scholar
  41. Gayán, E., Condón, S., & Álvarez, I. (2014). Biological aspects in food preservation by ultraviolet light: A review. Food and Bioprocess Technology, 7(1), 1–20.CrossRefGoogle Scholar
  42. George, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2015). Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple. Journal of Food Science, 80(2), S426–S434.PubMedCrossRefPubMedCentralGoogle Scholar
  43. George, D. S., Razali, Z., Santhirasegaram, V., & Somasundram, C. (2016). Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan). Journal of the Science of Food and Agriculture, 96(8), 2851–2860.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gómez, P. L., Alzamora, S. M., Castro, M. A., & Salvatori, D. M. (2010). Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behavior. Journal of Food Engineering, 98(1), 60–70.CrossRefGoogle Scholar
  45. Gómez-López, V. M., Koutchma, T., & Linden, K. (2012). Ultraviolet and pulsed light processing of fluid foods. In P. J. Cullen, B. K. Tiwari, & V. P. Valdramidis (Eds.), Novel thermal and non-thermal technologies for fluid foods (pp. 185–223). San Diego, CA: Academic.CrossRefGoogle Scholar
  46. Gouma, M., Álvarez, I., Condón, S., & Gayán, E. (2015). Modelling microbial inactivation kinetics of combined UV-H treatments in apple juice. Innovative Food Science & Emerging Technologies, 27, 111–120.CrossRefGoogle Scholar
  47. Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Review: Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147.CrossRefGoogle Scholar
  48. Guneser, O., & Karagul Yuceer, Y. (2012). Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk. Journal of Dairy Science, 95(11), 6230–6241.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gutiérrez, D. R., Chaves, A. R., & Rodríguez, S. D. C. (2017). Use of UV-C and gaseous ozone as sanitizing agents for keeping the quality of fresh-cut rocket (Eruca sativa mill). Journal of Food Processing and Preservation, 41(3), e12968. Scholar
  50. Ha, J.-W., & Kang, D.-H. (2015). Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action. Applied and Environmental Microbiology, 81(1), 2–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Heinrich, V., Zunabovic, M., Varzakas, T., Bergmair, J., & Kneifel, W. (2016). Pulsed light treatment of different food types with a special focus on meat: A critical review. Critical Reviews in Food Science and Nutrition, 56(4), 591–613.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hu, G., Zheng, Y., Liu, Z., Xiao, Y., Deng, Y., & Zhao, Y. (2017). Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 221, 1860–1866.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Ibarz, A., Pagán, J., Panadés, R., & Garza, S. (2005). Photochemical destruction of color compounds in fruit juices. Journal of Food Engineering, 69(2), 155–160.CrossRefGoogle Scholar
  54. Ishizaki, S., Hamada, M., Iso, N., & Taguchi, T. (1993). Effect of ultraviolet irradiation on rheological properties of thermal gels from sardine and pork meat pastes. Nippon Suisan Gakkaishi, 59, 1219–1224.CrossRefGoogle Scholar
  55. Islam, M. S., Patras, A., Pokharel, B., Vergne, M. J., Sasges, M., Begum, A., … Xiao, H. (2016). Effect of UV irradiation on the nutritional quality and cytotoxicity of apple juice. Journal of Agricultural and Food Chemistry, 64(41), 7812–7822.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jermann, C., Koutchma, T., Margas, E., Leadley, C., & Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science & Emerging Technologies, 31, 14–27.CrossRefGoogle Scholar
  57. Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209–215.CrossRefGoogle Scholar
  58. Jin, T. Z., Huang, M., Niemira, B. A., & Cheng, L. (2017). Microbial reduction and sensory quality preservation of fresh ginseng roots using nonthermal processing and antimicrobial packaging. Journal of Food Processing and Preservation, 41(1), e12871. Scholar
  59. Kanazawa, K., Hashimoto, T., Yoshida, S., Sungwon, P., & Fukuda, S. (2012). Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables. Journal of Agricultural and Food Chemistry, 60(17), 4359–4368.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kasım, M. U., & Kasım, R. (2008). Double-sided UV-C treatments delayed chlorophyll degradation but increased chilling injury of green bean (Phaseolus vulgaris L. cv. Helda) during storage. Journal of Food, Agriculture & Environment, 6, 176–180.Google Scholar
  61. Kershner, K. (2015). The role of UV in industry. Water and Wastes Digest, 20.Google Scholar
  62. Kim, S. K., Bae, R. N., & Chun, C. (2011). Changes in bioactive compounds contents of “Maehyang” and “Seolhyang” strawberry fruits by UV light illumination. Korean Journal of Horticultural Science & Technology, 29(3), 172–180.Google Scholar
  63. Kim, Y.-H., Jeong, S.-G., Back, K.-H., Park, K.-H., Chung, M.-S., & Kang, D.-H. (2013). Effect of various conditions on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in fresh-cut lettuce using ultraviolet radiation. International Journal of Food Microbiology, 166(3), 349–355.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Koutchma, T. (2008). UV light for processing foods. Ozone: Science & Engineering, 30(1), 93–98.CrossRefGoogle Scholar
  65. Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155.CrossRefGoogle Scholar
  66. Koutchma, T., Forney, L. J., & Moraru, C. I. (2009). Ultraviolet light in food technology: Principles and applications. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  67. Koutchma, T., Keller, S., Chirtel, S., & Parisi, B. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science & Emerging Technologies, 5(2), 179–189.CrossRefGoogle Scholar
  68. Koutchma, T., & Orlowska, M. (2012). Ultraviolet light for processing fruits and fruit products. In S. Fernandes & F. A. N. Fernandes (Eds.), Advances in fruit processing technologies. Boca Raton, FL: CRC Press/Taylor and Francis.Google Scholar
  69. Koutchma, T., & Parisi, B. P. (2004). Biodosimetry inactivation in of Escherichia coli UV model juices with regard to dose distribution in annular UV reactors. Journal of Food Science, 69(1), FEP14–FEP22.Google Scholar
  70. Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867.CrossRefGoogle Scholar
  71. Kuan, Y.-H., Bhat, R., & Karim, A. A. (2011). Emulsifying and foaming properties of ultraviolet-irradiated egg white protein and sodium caseinate. Journal of Agricultural and Food Chemistry, 59(8), 4111–4118.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kuan, Y.-H., Bhat, R., Patras, A., & Karim, A. A. (2013). Radiation processing of food proteins – A review on the recent developments. Trends in Food Science & Technology, 30(2), 105–120.CrossRefGoogle Scholar
  73. Lacivita, V., Conte, A., Manzocco, L., Plazzotta, S., Zambrini, V. A., Del Nobile, M. A., & Nicoli, M. C. (2016). Surface UV-C light treatments to prolong the shelf-life of Fiordilatte cheese. Innovative Food Science & Emerging Technologies, 36, 150–155.CrossRefGoogle Scholar
  74. Lamikanra, O., Kueneman, D., Ukuku, D., & Bett-Garber, K. L. (2005). Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. Journal of Food Science, 70(9), C534–C539.CrossRefGoogle Scholar
  75. Lante, A., Tinello, F., & Nicoletto, M. (2016). UV-A light treatment for controlling enzymatic browning of fresh-cut fruits. Innovative Food Science & Emerging Technologies, 34, 141–147.CrossRefGoogle Scholar
  76. Lavilla, M., & Gayán, E. (2018). Consumer acceptance and marketing of foods processed through emerging technologies. In F. J. Barba, A. S. Sant’Ana, V. Orlien, & M. Koubaa (Eds.), Innovative technologies for food preservation: Inactivation of spoilage and pathogenic microorganisms (pp. 233–253). Academis Press/Elsevier. London, UK.Google Scholar
  77. Lázaro, C. A., Conte-Júnior, C. A., Monteiro, M. L. G., Canto, A. C. V. S., Costa-Lima, B. R. C., Mano, S. B., & Franco, R. M. (2014). Effects of ultraviolet light on biogenic amines and other quality indicators of chicken meat during refrigerated storage. Poultry Science, 93(9), 2304–2313.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Liu, J., Stevens, C., Khan, V. A., Lu, J. Y., Wilson, C. L., Adeyeye, O., … Droby, S. (1993). Application of ultraviolet-C light on storage rots and ripening of tomatoes. Journal of Food Protection, 56(10), 868–873.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Longo, E., Morozova, K., & Scampicchio, M. (2017). Effect of light irradiation on the antioxidant stability of oleuropein. Food Chemistry, 237, 91–97.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Ma, L., Zhang, M., Bhandari, B., & Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23–38.CrossRefGoogle Scholar
  81. Manzocco, L., Da Pieve, S., Bertolini, A., Bartolomeoli, I., Maifreni, M., Vianello, A., & Nicoli, M. C. (2011). Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biology and Technology, 61(2), 165–171.CrossRefGoogle Scholar
  82. Manzocco, L., Dri, A., & Quarta, B. (2009). Inactivation of pectic lyases by light exposure in model systems and fresh-cut apple. Innovative Food Science & Emerging Technologies, 10(4), 500–505.CrossRefGoogle Scholar
  83. Manzocco, L., & Nicoli, M. C. (2015). Surface processing: Existing and potential applications of ultraviolet light. Critical Reviews in Food Science and Nutrition, 55(4), 469–484.PubMedCrossRefGoogle Scholar
  84. Manzocco, L., Panozzo, A., & Nicoli, M. C. (2012). Effect of ultraviolet processing on selected properties of egg white. Food Chemistry, 135(2), 522–527.PubMedCrossRefGoogle Scholar
  85. Manzocco, L., Quarta, B., & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science & Emerging Technologies, 10(4), 506–511.CrossRefGoogle Scholar
  86. Marquenie, D. (2002). Evaluation of physical techniques for surface disinfection of strawberry and sweet cherry (Thesis). Katholieke Universiteit Leuven, Leuven, Belgium.Google Scholar
  87. Marquenie, D., Michiels, C. W., Geeraerd, A. H., Schenk, A., Soontjens, C., Van Impe, J. F., & Nicolaï, B. M. (2002). Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. International Journal of Food Microbiology, 73(2), 187–196.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Marquenie, D., Michiels, C. W., Van Impe, J. F., Schrevens, E., & Nicolaï, B. N. (2003). Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biology and Technology, 28(3), 455–461.CrossRefGoogle Scholar
  89. Martínez-Hernández, G. B., Navarro-Rico, J., Gómez, P. A., Otón, M., Artés, F., & Artés-Hernández, F. (2015). Combined sustainable sanitising treatments to reduce Escherichia coli and Salmonella Enteritidis growth on fresh-cut kailan-hybrid broccoli. Food Control, (47), 312–317.Google Scholar
  90. Matak, K. E., Sumner, S. S., Duncan, S. E., Hovingh, E., Worobo, R. W., Hackney, C. R., & Pierson, M. D. (2007). Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science, 90(7), 3178–3186.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Meng, X., & Chan, W. (2017). Determination of 2-alkylcyclobutanones in ultraviolet light-irradiated fatty acids, triglycerides, corn oil, and pork samples: Identifying a new source of 2-alkylcyclobutanones. Food Chemistry, 217, 352–359.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mikš-Krajnik, M., James Feng, L. X., Bang, W. S., & Yuk, H.-G. (2017). Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control, 74, 54–60.CrossRefGoogle Scholar
  93. Misra, N. N. (2015). The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science & Technology, 45(2), 229–244.CrossRefGoogle Scholar
  94. Molina, B., Sáez, M. I., Martínez, T. F., Guil-Guerrero, J. L., & Suárez, M. D. (2014). Effect of ultraviolet light treatment on microbial contamination, some textural and organoleptic parameters of cultured sea bass fillets (Dicentrarchus labrax). Innovative Food Science & Emerging Technologies, 26, 205–213.CrossRefGoogle Scholar
  95. Monteiro, M. L. G., Mársico, E. T., da Canto, A. C. V. C. S., da Costa-Lima, B. R. C., da Costa, M. P., Viana, F. M., … Conte-Junior, C. A. (2017). Impact of UV-C light on the fatty acid profile and oxidative stability of Nile Tilapia (Oreochromis niloticus) fillets. Journal of Food Science, 82(4), 1028–1036.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Moreno, C., Andrade-Cuvi, M. J., Zaro, M. J., Darre, M., Vicente, A. R., & Concellón, A. (2017). Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut carambola. Journal of Food Quality. Scholar
  97. Mori, M., Hamamoto, A., Takahashi, A., Nakano, M., Wakikawa, N., Tachibana, S., … Kinouchi, Y. (2007). Development of a new water sterilization device with a 365 nm UV-LED. Medical & Biological Engineering & Computing, 45(12), 1237–1241.CrossRefGoogle Scholar
  98. Mukhopadhyay, S., Ukuku, D. O., Juneja, V., & Fan, X. (2014). Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157:H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control, 44, 110–117.CrossRefGoogle Scholar
  99. Müller, A., Noack, L., Greiner, R., Stahl, M. R., & Posten, C. (2014). Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juices. Innovative Food Science & Emerging Technologies, 26, 498–504.CrossRefGoogle Scholar
  100. Nogales-Delgado, S., Fernández-León, A. M., Delgado-Adámez, J., Hernández-Méndez, M. T., & Bohoyo-Gil, D. (2014). Lactic acid and ultraviolet-C as sanitizer for preserving quality of minimally processed romaine lettuce. Journal of Food Processing and Preservation, 38(3), 774–783.CrossRefGoogle Scholar
  101. Oh, S. R., Kang, I., Oh, M. H., & Ha, S. D. (2014). Inhibitory effect of chlorine and ultraviolet radiation on growth of Listeria monocytogenes in chicken breast and development of predictive growth models. Poultry Science, 93(1), 200–207.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Ohlsson, T. (2002). Minimal processing of food with non-thermal methods. In T. Ohlsson & N. Bengtsson (Eds.), Minimal processing technologies in the food industry (pp. 34–60). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  103. Orlowska, M., Koutchma, T., Grapperhaus, M., Gallagher, J., Schaefer, R., & Defelice, C. (2012). Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: Effects on quality of fructose solution, apple juice, and milk. Food and Bioprocess Technology, 6(6), 1580–1592.CrossRefGoogle Scholar
  104. Otoni, C. G., Avena-Bustillos, R. J., Chiou, B.-S., Bilbao-Sainz, C., Bechtel, P. J., & McHugh, T. H. (2012). Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films. Journal of Food Science, 77(9), E215–E223.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ozen, B. F., & Floros, J. D. (2001). Effects of emerging food processing techniques on the packaging materials. Trends in Food Science & Technology, 12(2), 60–67.CrossRefGoogle Scholar
  106. Ozer, N. P., & Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science & Technology, 41(4), 354–360.CrossRefGoogle Scholar
  107. Pala, Ç. U., & Toklucu, A. K. (2013). Effects of UV-C light processing on some quality characteristics of grape juices. Food and Bioprocess Technology, 6(3), 719–725.CrossRefGoogle Scholar
  108. Pan, Y. G., & Zu, H. (2012). Effect of UV-C radiation on the quality of fresh-cut pineapples. Procedia Engineering, 37, 113–119.CrossRefGoogle Scholar
  109. Park, S. K., Cho, J. M., & Rhee, C. O. (2003). Effects of ultraviolet radiation on the red colored film of soy protein isolate. Food Science and Biotechnology, 12, 385–389.Google Scholar
  110. Park, S. Y., & Ha, S.-D. (2015). Ultraviolet-C radiation on the fresh chicken Breast: Inactivation of major foodborne viruses and changes in physicochemical and sensory qualities of product. Food and Bioprocess Technology, 8(4), 895–906.CrossRefGoogle Scholar
  111. Park, S. Y., Lee, N.-Y., Kim, S.-H., Cho, J.-I., Lee, H.-J., & Ha, S.-D. (2014). Effect of ultraviolet radiation on the reduction of major food spoilage molds and sensory quality of the surface of dried filefish (Stephanolepis cirrhifer) fillets. Food Research International, 62, 1108–1112.CrossRefGoogle Scholar
  112. Pellicer, J. A., & Gómez-López, V. M. (2017). Pulsed light inactivation of horseradish peroxidase and associated structural changes. Food Chemistry, 237, 632–637.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943.CrossRefGoogle Scholar
  114. Pinheiro, J. C., Alegria, C. S. M., Abreu, M. M. M. N., Gonçalves, E. M., & Silva, C. L. M. (2016). Evaluation of alternative preservation treatments (water heat treatment, ultrasounds, thermosonication and UV-C radiation) to improve safety and quality of whole tomato. Food and Bioprocess Technology, 9(6), 924–935.CrossRefGoogle Scholar
  115. Promyou, S., & Supapvanich, S. (2016). Physicochemical changes in ‘kaew kamin’ mango fruit illuminated with ultraviolet-C (UV-C) during storage. Journal of Agricultural Science and Technology, 18(1), 145–154.Google Scholar
  116. Raybaudi-Massilia, R., Calderón-Gabaldón, M. I., Mosqueda-Melgar, J., & Tapia, M. S. (2013). Inactivation of Salmonella enterica ser. Poona and Listeria monocytogenes on fresh-cut “Maradol” red papaya (Carica papaya L) treated with UV-C light and malic acid. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8(1–2), 37–44.CrossRefGoogle Scholar
  117. Rhim, J. W., Gennadios, A., Fu, D., Weller, C. L., & Hanna, M. A. (1999). Properties of ultraviolet irradiated protein films. LWT - Food Science and Technology, 32(3), 129–133.CrossRefGoogle Scholar
  118. Rodoni, L. M., Zaro, M. J., Hasperué, J. H., Concellón, A., & Vicente, A. R. (2015). UV-C treatments extend the shelf life of fresh-cut peppers by delaying pectin solubilization and inducing local accumulation of phenolics. LWT - Food Science and Technology, 63(1), 408–414.CrossRefGoogle Scholar
  119. Rodriguez-Gonzalez, O., Buckow, R., Koutchma, T., & Balasubramaniam, V. M. (2015). Energy requirements for alternative food processing technologies-principles, assumptions, and evaluation of efficiency. Comprehensive Reviews in Food Science and Food Safety, 14(5), 536–554.CrossRefGoogle Scholar
  120. Romero, L., Colivet, J., Aron, N. M., & Ramosvillarroel, A. (2017). Impact of ultraviolet light on quality attributes of stored fresh-cut mango. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, 41, 62–80.Google Scholar
  121. Rossitto, P. V., Cullor, J. S., Crook, J., Parko, J., Sechi, P., & Cenci-Goga, B. T. (2012). Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow’s milk. Journal of Food Protection, 75(12), 2197–2207.PubMedCrossRefGoogle Scholar
  122. Şakiroğlu, H., Birdal, C., Başlar, M., & Öztürk, A. E. (2016). Inactivation kinetics of polyphenol oxidase in an aqueous model system under stand-alone and combined ultrasound and ultraviolet treatments. International Journal of Food Properties, 19(7), 1535–1543.CrossRefGoogle Scholar
  123. Sales, J. M., & Resurreccion, A. V. A. (2010). Phenolic profile, antioxidants, and sensory acceptance of bioactive-enhanced peanuts using ultrasound and UV. Food Chemistry, 122(3), 795–803.CrossRefGoogle Scholar
  124. Sampedro, F., & Fan, X. (2014). Inactivation kinetics and photoreactivation of vegetable oxidative enzymes after combined UV-C and thermal processing. Innovative Food Science & Emerging Technologies, 23, 107–113.CrossRefGoogle Scholar
  125. Santhirasegaram, V., Razali, Z., George, D. S., & Somasundram, C. (2015). Comparison of UV-C treatment and thermal pasteurization on quality of Chokanan mango (Mangifera indica L.) juice. Food and Bioproducts Processing, 94, 313–321.CrossRefGoogle Scholar
  126. Santo, D., Graça, A., Nunes, C., & Quintas, C. (2016). Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population. International Journal of Food Microbiology, 231, 10–15.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Scheidegger, D., Pecora, R. P., Radici, P. M., & Kivatinitz, S. C. (2010). Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure. Journal of Dairy Science, 93(11), 5101–5109.PubMedCrossRefGoogle Scholar
  128. Schenk, M., Loredo, A. G., Raffellini, S., Alzamora, S. M., & Guerrero, S. (2012). The effect of UV-C in combination with H2O2 treatments on microbial response and quality parameters of fresh cut pear discs. International Journal of Food Science & Technology, 47(9), 1842–1851.CrossRefGoogle Scholar
  129. Severo, J., de Oliveira, I. R., Tiecher, A., Chaves, F. C., & Rombaldi, C. V. (2015). Postharvest UV-C treatment increases bioactive, ester volatile compounds and a putative allergenic protein in strawberry. LWT - Food Science and Technology, 64(2), 685–692.CrossRefGoogle Scholar
  130. Shen, X. Z., Diao, E. J., Zhang, Z., Ji, N., Ma, W. W., & Dong, H. Z. (2014). Effects of UV-irradiation detoxification in a photodegradation reactor on quality of peanut oil. International Food Research Journal, 21, 2311–2314.Google Scholar
  131. Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D., & Ye, X. (2013). Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology, 76, 50–57.CrossRefGoogle Scholar
  132. Sommers, C. H., Geveke, D. J., Pulsfus, S., & Lemmenes, B. (2009). Inactivation of Listeria innocua on frankfurters by ultraviolet light and flash pasteurization. Journal of Food Science, 74(3), M138–M141.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sommers, C. H., Scullen, O. J., & Sites, J. E. (2010). Inactivation of foodborne pathogens on frankfurters using ultraviolet light and grass antimicrobials. Journal of Food Safety, 30(3), 666–678.Google Scholar
  134. Spikes, J. D. (1981). Photodegradation of foods and beverages. In K. C. Smith (Ed.), Photochemical and photobiological reviews (Vol. 6, pp. 39–85). Boston, MA: Springer.CrossRefGoogle Scholar
  135. Stoops, J., Jansen, M., Claes, J., & Van Campenhout, L. (2013). Decontamination of powdery and granular foods using Continuous Wave UV radiation in a dynamic process. Journal of Food Engineering, 119(2), 254–259.CrossRefGoogle Scholar
  136. Tammineedi, C. V. R. K., Choudhary, R., Perez-Alvarado, G. C., & Watson, D. G. (2013). Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT - Food Science and Technology, 54(1), 35–41.CrossRefGoogle Scholar
  137. Taze, B. H., Unluturk, S., Buzrul, S., & Alpas, H. (2015). The impact of UV-C irradiation on spoilage microorganisms and colour of orange juice. Journal of Food Science and Technology, 52(2), 1000–1007.CrossRefGoogle Scholar
  138. Tran, M. T. T., & Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science & Emerging Technologies, 5(4), 495–502.CrossRefGoogle Scholar
  139. Tripathi, S., & Mishra, H. N. (2010). Enzymatic coupled with UV degradation of aflatoxin B-1 in red chili powder. Journal of Food Quality, 33(s1), 186–203.CrossRefGoogle Scholar
  140. USFDA. (2000). Ultraviolet radiation for processing and treatment of food (No. 21CFR201.327, section 179.39 and 179.41). US Food and Drug Administration.Google Scholar
  141. USFDA. (2001). Hazard Analysis and Critical Control Point (HACCP): Procedures for the safe and sanitary processing and importing of juice: Final Rule (No. Federal register 66) (pp. 6138–6202). Food and Drug Administration.Google Scholar
  142. Vunnam, R., Hussain, A., Nair, G., Bandla, R., Gariepy, Y., Donnelly, D. J., … Raghavan, G. S. V. (2014). Physico-chemical changes in tomato with modified atmosphere storage and UV treatment. Journal of Food Science and Technology, 51(9), 2106–2112.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Wu, C.-K., Tsai, J.-S., & Sung, W.-C. (2015). Impact of ultraviolet treatment on improving gel strength of tilapia skin gelatin. International Journal of Food Properties, 18(8), 1702–1706.CrossRefGoogle Scholar
  144. Yang, S., Sadekuzzaman, M., & Ha, S.-D. (2017). Reduction of Listeria monocytogenes on chicken breasts by combined treatment with UV-C light and bacteriophage ListShield. LWT, 86, 193–200.CrossRefGoogle Scholar
  145. Yang, W. W., Chung, S.-Y., Ajayi, O., Krishnamurthy, K., Konan, K., & Goodrich-Schneider, R. (2010). Use of pulsed ultraviolet light to reduce the allergenic potency of soybean extracts. International Journal of Food Engineering, 6(3).
  146. Zhao, X., Yang, W., Chung, S.-Y., Sims, C. A., Otwell, S. W., & Rababah, T. M. (2014). Reduction of IgE immunoreactivity of whole peanut (Arachis hypogaea l.) after pulsed light illumination. Food and Bioprocess Technology, 7(9), 2637–2645.CrossRefGoogle Scholar
  147. Zhu, Y., Koutchma, T., Warriner, K., & Zhou, T. (2014). Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range. Journal of Food Protection, 77(6), 963–971.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Lavilla
    • 1
    Email author
  • Amaia Lasagabaster
    • 1
  • Iñigo Martínez-de-Marañón
    • 1
  1. 1.AZTI, Department of Food Quality, Safety and IdentityTechnological Park BizkaiaDerio (Bizkaia)Spain

Personalised recommendations