Advertisement

Cold Plasma Effects on the Nutritional, Textural and Sensory Characteristics of Fruits and Vegetables, Meat, and Dairy Products

  • George Amponsah AnnorEmail author
Chapter

Abstract

The non-thermal nature of cold plasma processing has brought it to the spotlight in recent times as an alternative food processing technology, especially for foods sensitive to heat. Simply defined as the generation of short-lived reactive species by the application of electricity to gas, non-thermal plasma has become an important food processing technology. Figure 7.1 shows a schematic presentation of atmospheric cold plasma processing of food products. Depending on the plasma technique used (i.e. corona discharge, dielectric barrier discharge, gliding arch, plasma jets, and radio frequency discharges), different reactive species are produced, usually from vibrationally and electronically excited nitrogen and oxygen. The type of reactive species produced largely depends on the type of gas used. The gases mostly used are but not limited to oxygen, nitrogen, argon, hydrogen, air and their mixtures. These reactive species react with surfaces, they come into contact with resulting in modifications. The effects of cold plasma on the various food components such as proteins, starch, lipids, and phenolics have been previously reported. One of the main applications of cold plasma in food processing is for the sterilization of food products. Other applications such as food quality improvement, packaging applications, surface modifications, and the degradation of toxins in foods have been reported. In this chapter, the advantages and challenges of using cold plasma on the quality of fruits, vegetables, meat and dairy products are highlighted. The discussion is focused on the effects of cold plasma on the nutritional, textural and sensory properties of fruits and vegetables, meat and dairy products.

References

  1. Akocak, P. B. (2016). Current progress in advanced research into fungal and mycotoxin inactivation by cold plasma sterilization. In H. Shintani & A. Sakudo (Eds.), Gas plasma sterilization in microbiology: Theory, applications, pitfalls and new perspectives (pp. 59–74). Norfolk, UK: Caister Academic Press.CrossRefGoogle Scholar
  2. Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT, 73, 178–184.CrossRefGoogle Scholar
  3. Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., & Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202, 247–253.CrossRefGoogle Scholar
  4. Bastos, D. C., dos Santos, A. E. F., & Simao, R. A. (2014). Acetylene coating on cornstarch plastics produced by cold plasma technology. Starch, 66(3–4), 267–273.CrossRefGoogle Scholar
  5. Brandenburg, R., Ehlbeck, J., Stieber, M., Woedtke, T. v., Zeymer, J., Schlüter, O., & Weltmann, K.-D. (2007). Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure Rf-driven plasma jet. Contributions to Plasma Physics, 47(1-2), 72–79.CrossRefGoogle Scholar
  6. Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323.CrossRefGoogle Scholar
  7. Cheng, S. Y., Yuen, C. W. M., Kan, C. W., Cheuk, K. K. L., Daoud, W. A., Lam, P. L., & Tsoi, W. Y. I. (2010). Influence of atmospheric pressure plasma treatment on various fibrous materials: Performance properties and surface adhesion analysis. Vacuum, 84(12), 1466–1470.CrossRefGoogle Scholar
  8. Dirks, B. P., Dobrynin, D., Fridman, G., Mukhin, Y., Fridman, A., & Quinlan, J. J. (2012). Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. Journal of Food Protection, 75(1), 22–28.CrossRefGoogle Scholar
  9. Dong, S., Gao, A., Xu, H., & Chen, Y. (2017). Effects of dielectric barrier discharges (DBD) cold plasma treatment on physicochemical and structural properties of zein powders. Food and Bioprocess Technology, 10(3), 434–444.CrossRefGoogle Scholar
  10. Elez Garofulić, I., Režek Jambrak, A., Milošević, S., Dragović-Uzelac, V., Zorić, Z., & Herceg, Z. (2015). The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT – Food Science and Technology, 62(1, Part 2), 894–900.CrossRefGoogle Scholar
  11. Fröhling, A., Baier, M., Ehlbeck, J., Knorr, D., & Schlüter, O. (2012). Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces: Inactivation kinetics and flow cytometric characterization. Innovative Food Science & Emerging Technologies, 13, 142–150.CrossRefGoogle Scholar
  12. Grzegorzewski, F., Ehlbeck, J., Schlüter, O., Kroh, L. W., & Rohn, S. (2011). Treating lamb’s lettuce with a cold plasma – Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT – Food Science and Technology, 44(10), 2285–2289.CrossRefGoogle Scholar
  13. Gurol, C., Ekinci, F. Y., Aslan, N., & Korachi, M. (2012). Low temperature plasma for decontamination of E. coli in milk. International Journal of Food Microbiology, 157(1), 1–5.  https://doi.org/10.1016/j.ijfoodmicro.2012.02.016CrossRefGoogle Scholar
  14. Han, L., Boehm, D., Amias, E., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innovative Food Science & Emerging Technologies, 38, 384–392.CrossRefGoogle Scholar
  15. Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46, 51–57.CrossRefGoogle Scholar
  16. Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., & Jo, C. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28(1), 9–13.CrossRefGoogle Scholar
  17. Kim, H.-J., Yong, H. I., Park, S., Choe, W., & Jo, C. (2013). Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Current Applied Physics, 13(7), 1420–1425.CrossRefGoogle Scholar
  18. Kim, H.-J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47, 451–456.CrossRefGoogle Scholar
  19. Kim, H.-S., & Min, S. C. (2017). Effects of microwave-discharged cold plasma on synthesis and characteristics of citrate derivatives of corn starch granules. Food Science and Biotechnology, 26(3), 697–706.CrossRefGoogle Scholar
  20. Korachi, M., Ozen, F., Aslan, N., Vannini, L., Guerzoni, M. E., Gottardi, D., & Ekinci, F. Y. (2015). Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. International Dairy Journal, 42, 64–69.CrossRefGoogle Scholar
  21. Lee, H.-J., Jung, S., Jung, H.-S., Park, S.-H., Choe, W.-H., Ham, J.-S., & Jo, C. (2012). Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. Journal of Animal Science and Technology, 54(3), 191–198.CrossRefGoogle Scholar
  22. Los, A., Ziuzina, D., Boehm, D., Cullen, P. J., & Bourke, P. (2017). The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. Innovative Food Science & Emerging Technologies, 44, 36–45.CrossRefGoogle Scholar
  23. Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1), 100–121.CrossRefGoogle Scholar
  24. Misra, N. N., & Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology, 64, 74–86.CrossRefGoogle Scholar
  25. Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N., & Cullen, P. J. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44, 115–121.CrossRefGoogle Scholar
  26. Misra, N. N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131–138.CrossRefGoogle Scholar
  27. Niemira, B. A., & Sites, J. (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food Protection, 71(7), 1357–1365.CrossRefGoogle Scholar
  28. Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107, 55–65.CrossRefGoogle Scholar
  29. Rød, S. K., Hansen, F., Leipold, F., & Knøchel, S. (2012). Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiology, 30(1), 233–238.CrossRefGoogle Scholar
  30. Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333.CrossRefGoogle Scholar
  31. Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances, 33(6, Part 2), 1108–1119.CrossRefGoogle Scholar
  32. Selcuk, M., Oksuz, L., & Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, 99(11), 5104–5109.CrossRefGoogle Scholar
  33. Shi, H., Cooper, B., Stroshine, R. L., Ileleji, K. E., & Keener, K. M. (2017). Structures of degradation products and degradation pathways of aflatoxin B-1 by high-voltage atmospheric cold plasma (HVACP) treatment. Journal of Agricultural and Food Chemistry, 65(30), 6222–6230.CrossRefGoogle Scholar
  34. Shi, X., Zhang, G., Wu, X., Li, Y., Ma, Y., & Shao, X. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591–1597.CrossRefGoogle Scholar
  35. Takai, E., Kitamura, T., Kuwabara, J., Ikawa, S., Yoshizawa, S., Shiraki, K., … Kitano, K. (2014). Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. Journal of Physics D: Applied Physics, 47(28), 285403.CrossRefGoogle Scholar
  36. Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2017). Functional and rheological properties of cold plasma treated rice starch. Carbohydrate Polymers, 157, 1723–1731.CrossRefGoogle Scholar
  37. Ulbin-Figlewicz, N., Brychcy, E., & Jarmoluk, A. (2015). Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. Journal of Food Science and Technology, 52(2), 1228–1232.CrossRefGoogle Scholar
  38. Vleugels, M., Shama, G., Deng, X. T., Greenacre, E., Brocklehurst, T., & Kong, M. G. (2005). Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Transactions on Plasma Science, 33(2), 824–828.CrossRefGoogle Scholar
  39. Yasuda, H., Miura, T., Kurita, H., Takashima, K., & Mizuno, A. (2010). Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Processes and Polymers, 7(3–4), 301–308.CrossRefGoogle Scholar
  40. Yong, H. I., Kim, H.-J., Park, S., Kim, K., Choe, W., Yoo, S. J., & Jo, C. (2015). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Research International, 69, 57–63.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Food Science and NutritionUniversity of MinnesotaSt. PaulUSA

Personalised recommendations