Advertisement

Impact of Pulsed Light on Food Constituents

  • Peng Peng
  • Paul Chen
  • Dongjie Chen
  • Min Addy
  • Yanling Cheng
  • Nan Zhou
  • Charles Schiappacasse
  • Yaning Zhang
  • Erik Anderson
  • Juer Liu
  • Yiwei Ma
  • Roger RuanEmail author
Chapter

Abstract

As one of the emerging non-thermal food treatment technologies, pulsed light (PL) has been intensively studied since the twenty first century. PL technology uses intermittent light pulses to treat food products without leaving any residues. The current use of PL technology is for decontamination purposes. The decontamination effects of PL treatment rely on primarily light with the different wavelength and the pulsed energy. Therefore, this chapter starts by explaining the disinfection mechanism of PL technology, where analysis of the UV disinfection mechanism would be helpful. Unlike electron beam, X-rays, and gamma rays, UV light is non-ionizing irradiation and does not break molecular bonds. The UV light can be emitted either as a continuous wave (continuous light) or in short duration pulses of 1–20 per second as in the case of pulsed light. Continuous UV light may be categorized into three types according to the emission spectrum: (1) short-wave UV (UV-C) with wavelengths from 200 to 280 nm, (2) medium-wave UV (UV-B) with wavelengths from 280 to 320 nm, and (3) long-wave UV (UV-A) with wavelengths from 320 to 400 nm. UV-C has been used for disinfection of air, surface, water, and liquid foods. The mechanisms responsible for microbial inactivation by UV light are believed to be due to the photochemical, photothermal and photophysical effects on microbes exposed to UV light.

References

  1. Aguiló-Aguayo, I., Charles, F., Renard, C. M. G. C., Page, D., & Carlin, F. (2013). Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biology and Technology, 86, 29–36.CrossRefGoogle Scholar
  2. Bhavya, M. L., & Umesh Hebbar, H. (2017). Pulsed light processing of foods for microbial safety. Food Quality and Safety, 1(3), 187–202.CrossRefGoogle Scholar
  3. Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry – a critical review. Journal of the Science of Food and Agriculture, 80(6), 637–645.PubMedCrossRefGoogle Scholar
  4. Birmpa, A., Vantarakis, A., Paparrodopoulos, S., Whyte, P., & Lyng, J. (2014). Efficacy of three light technologies for reducing microbial populations. BioMed Research International.  https://doi.org/10.1155/2014/673939CrossRefGoogle Scholar
  5. Brandt, A., Serrano Oria, Ó., Kallon, M., & Bazzano, A. N. (2017). Infant feeding policy and programming during the 2014–2015 ebola virus disease outbreak in Sierra Leone. Global Health: Science and Practice, 5(3), 507–515.Google Scholar
  6. Can, F. O., Demirci, A., Puri, V. M., & Gourama, H. (2014). Decontamination of hard cheeses by pulsed UV light. Journal of Food Protection, 77(10), 1723–1731.PubMedCrossRefGoogle Scholar
  7. Cheigh, C.-I., Hwang, H.-J., & Chung, M.-S. (2013). Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods. Food Research International, 54(1), 745–752.CrossRefGoogle Scholar
  8. Cheigh, C.-I., Park, M.-H., Chung, M.-S., Shin, J.-K., & Park, Y.-S. (2012). Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control, 25(2), 654–659.CrossRefGoogle Scholar
  9. Djenane, D., Sánchez-Escalante, A., Beltrán, J. A., & Roncalés, P. (2001). Extension of the retail display life of fresh beef packaged in modified atmosphere by varying lighting conditions. Journal of Food Science, 66(1), 181–186.CrossRefGoogle Scholar
  10. Dunn, J. (1995). Pulsed-light treatment of food and packaging. Food Technology, 49, 95–98.Google Scholar
  11. Elmnasser, N., Dalgalarrondo, M., Orange, N., Bakhrouf, A., Haertlé, T., Federighi, M., & Chobert, J.-M. (2008). Effect of pulsed-light treatment on milk proteins and lipids. Journal of Agricultural and Food Chemistry, 56(6), 1984–1991.PubMedCrossRefGoogle Scholar
  12. Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., & Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Canadian Journal of Microbiology, 53(7), 813–821.PubMedCrossRefGoogle Scholar
  13. Fernández, M., Ganan, M., Guerra, C., & Hierro, E. (2014). Protein oxidation in processed cheese slices treated with pulsed light technology. Food Chemistry, 159, 388–390.PubMedCrossRefGoogle Scholar
  14. Fernández, M., Hospital, X. F., Arias, K., & Hierro, E. (2016). Application of pulsed light to sliced cheese: Effect on Listeria inactivation, sensory quality and volatile profile. Food and Bioprocess Technology, 9(8), 1335–1344.CrossRefGoogle Scholar
  15. Fine, F., & Gervais, P. (2004). Efficiency of pulsed UV light for microbial decontamination of food powders. Journal of Food Protection, 67(4), 787–792.PubMedCrossRefGoogle Scholar
  16. Ganan, M., Hierro, E., Hospital, X. F., Barroso, E., & Fernández, M. (2013). Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control, 32(2), 512–517.CrossRefGoogle Scholar
  17. Gardner, D. W., & Shama, G. (2000). Modeling UV-induced inactivation of microorganisms on surfaces. Journal of Food Protection, 63(1), 63–70.PubMedCrossRefGoogle Scholar
  18. Gómez, P. L., Salvatori, D. M., García-Loredo, A., & Alzamora, S. M. (2012). Pulsed light treatment of cut apple: Dose effect on color, structure, and microbiological stability. Food and Bioprocess Technology, 5(6), 2311–2322.CrossRefGoogle Scholar
  19. Gómez-López, V. M., Devlieghere, F., Bonduelle, V., & Debevere, J. (2005). Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology, 103(1), 79–89.PubMedCrossRefGoogle Scholar
  20. Gorny, J. R. (2003). A summary of CA and MA requirements and recommendations for fresh-cut (minimally processed) fruits and vegetables. Acta Horticulturae, 600, 609–614.CrossRefGoogle Scholar
  21. Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Review: Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147.CrossRefGoogle Scholar
  22. Hierro, E., Ganan, M., Barroso, E., & Fernández, M. (2012). Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio. International Journal of Food Microbiology, 158(1), 42–48.PubMedCrossRefGoogle Scholar
  23. Huang, Y., & Chen, H. (2014). A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiology, 40, 1–8.PubMedCrossRefGoogle Scholar
  24. Huang, Y., & Chen, H. (2015). Inactivation of Escherichia coli O157:H7, Salmonella and human norovirus surrogate on artificially contaminated strawberries and raspberries by water-assisted pulsed light treatment. Food Research International, 72, 1–7.CrossRefGoogle Scholar
  25. Huang, Y., Sido, R., Huang, R., & Chen, H. (2015). Application of water-assisted pulsed light treatment to decontaminate raspberries and blueberries from Salmonella. International Journal of Food Microbiology, 208, 43–50.PubMedCrossRefGoogle Scholar
  26. Huang, Y.-W., & Toledo, R. (1982). Effect of high doses of high and low intensity UV irradiation on surface microbiological counts and storage-life of fish. Journal of Food Science, 47(5), 1667–1669.CrossRefGoogle Scholar
  27. Ignat, A., Manzocco, L., Maifreni, M., Bartolomeoli, I., & Nicoli, M. C. (2014). Surface decontamination of fresh-cut apple by pulsed light: Effects on structure, colour and sensory properties. Postharvest Biology and Technology, 91, 122–127.CrossRefGoogle Scholar
  28. Jourdan-da Silva, N., Fabre, L., Robinson, E., Fournet, N., Nisavanh, A., Bruyand, M., … Le Hello, S. (2018). Ongoing nationwide outbreak of Salmonella Agona associated with internationally distributed infant milk products, France, December 2017. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 23(2).  https://doi.org/10.2807/1560-7917.ES.2018.23.2.17-00852
  29. Kasahara, I., Carrasco, V., & Aguilar, L. (2015). Inactivation of Escherichia coli in goat milk using pulsed ultraviolet light. Journal of Food Engineering, 152, 43–49.CrossRefGoogle Scholar
  30. Keener, L., & Krishnamurthy, K. (2014). Shedding light on food safety: Applications of pulsed light processing. Food Safety Magazine, 20, 28–33.Google Scholar
  31. Kuo, F.-L., Carey, J. B., & Ricke, S. C. (1997). UV irradiation of shell eggs: Effect on populations of aerobes, molds, and inoculated Salmonella Typhimurium. Journal of Food Protection, 60(6), 639–643.PubMedCrossRefGoogle Scholar
  32. Lee, B. H., Kermasha, S., & Baker, B. E. (1989). Thermal, ultrasonic and ultraviolet inactivation of Salmonella in thin films of aqueous media and chocolate. Food Microbiology, 6(3), 143–152.CrossRefGoogle Scholar
  33. Lilie, M., Hein, S., Wilhelm, P., & Mueller, U. (2007). Decontamination of spices by combining mechanical and thermal effects – an alternative approach for quality retention. International Journal of Food Science & Technology, 42(2), 190–193.CrossRefGoogle Scholar
  34. Luksiene, Z., Buchovec, I., & Viskelis, P. (2013). Impact of high-power pulsed light on microbial contamination, health promoting components and shelf life of strawberries. Food Technology and Biotechnology, 51, 284.Google Scholar
  35. Maftei, N. A., Ramos-Villarroel, A. Y., Nicolau, A. I., Martín-Belloso, O., & Soliva-Fortuny, R. (2014). Influence of processing parameters on the pulsed-light inactivation of Penicillium expansum in apple juice. Food Control, 41, 27–31.CrossRefGoogle Scholar
  36. Miller, B. M., Sauer, A., & Moraru, C. I. (2012). Inactivation of Escherichia coli in milk and concentrated milk using pulsed-light treatment. Journal of Dairy Science, 95(10), 5597–5603.PubMedCrossRefGoogle Scholar
  37. Moreira, M. R., Álvarez, M. V., Martín-Belloso, O., & Soliva-Fortuny, R. (2017). Effects of pulsed light treatments and pectin edible coatings on the quality of fresh-cut apples: A hurdle technology approach. Journal of the Science of Food and Agriculture, 97(1), 261–268.PubMedCrossRefGoogle Scholar
  38. Mullen, J. (2017). Baby formula recalled worldwide over salmonella scare. CNN Money.Google Scholar
  39. Nicorescu, I., Nguyen, B., Chevalier, S., & Orange, N. (2014). Effects of pulsed light on the organoleptic properties and shelf-life extension of pork and salmon. Food Control, 44, 138–145.CrossRefGoogle Scholar
  40. Nicorescu, I., Nguyen, B., Moreau-Ferret, M., Agoulon, A., Chevalier, S., & Orange, N. (2013). Pulsed light inactivation of Bacillus subtilis vegetative cells in suspensions and spices. Food Control, 31(1), 151–157.CrossRefGoogle Scholar
  41. Niemira, B. A. (2014). Irradiation, microwave, and alternative energy-based treatments for low-water activity foods. In J. B. Gurtler, M. P. Doyle, & J. L. Kornacki (Eds.), The Microbiological safety of low water activity foods and spices (pp. 389–401). New York, NY: Springer.CrossRefGoogle Scholar
  42. Oms-Oliu, G., Aguiló-Aguayo, I., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biology and Technology, 56(3), 216–222.CrossRefGoogle Scholar
  43. Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3(1), 13–23.CrossRefGoogle Scholar
  44. Orlowska, M., Koutchma, T., Grapperhaus, M., Gallagher, J., Schaefer, R., & Defelice, C. (2012). Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: Effects on quality of fructose solution, apple juice, and milk. Food and Bioprocess Technology, 6(6), 1580–1592.CrossRefGoogle Scholar
  45. Ozer, N. P., & Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science & Technology, 41(4), 354–360.CrossRefGoogle Scholar
  46. Paškevičiūtė, E., & Lukšienė, Ž. (2009). High-power pulsed light for decontamination of chicken breast surface. Cheminė Technologija, 4, 53.Google Scholar
  47. Rajkovic, A., Tomasevic, I., De Meulenaer, B., & Devlieghere, F. (2017). The effect of pulsed UV light on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus and staphylococcal enterotoxin A on sliced fermented salami and its chemical quality. Food Control, 73, 829–837.CrossRefGoogle Scholar
  48. Rysstad, G., & Kolstad, J. (2006). Extended shelf life milk—advances in technology. International Journal of Dairy Technology, 59(2), 85–96.CrossRefGoogle Scholar
  49. Siddique, M. A. B., Maresca, P., Pataro, G., & Ferrari, G. (2016). Effect of pulsed light treatment on structural and functional properties of whey protein isolate. Food Research International, 87, 189–196.PubMedCrossRefGoogle Scholar
  50. Smith, W. L., Lagunas-Solar, M. C., & Cullor, J. S. (2002). Use of pulsed ultraviolet laser light for the cold pasteurization of bovine milk. Journal of Food Protection, 65(9), 1480–1482.PubMedCrossRefGoogle Scholar
  51. Steenland, K., Whelan, E., Deddens, J., Stayner, L., & Ward, E. (2003). Ethylene oxide and breast cancer incidence in a cohort study of 7576 women (United States). Cancer Causes & Control, 14(6), 531–539.CrossRefGoogle Scholar
  52. Tomašević, I. (2015). Intense light pulses upset the sensory quality of meat products. Tehnologija Mesa, 56, 1–7.CrossRefGoogle Scholar
  53. Tomašević, I., & Rajković, A. (2015). The sensory quality of meat, game, poultry, seafood and meat products as affected by intense light pulses: A systematic review. Procedia Food Science, 5, 285–288.CrossRefGoogle Scholar
  54. van Aardt, M., Duncan, S. E., Marcy, J. E., Long, T. E., O’Keefe, S. F., & Nielsen-Sims, S. R. (2005). Aroma analysis of light-exposed milk stored with and without natural and synthetic antioxidants. Journal of Dairy Science, 88(3), 881–890.PubMedCrossRefGoogle Scholar
  55. Wallner-Pendleton, E. A., Sumner, S. S., Froning, G. W., & Stetson, L. E. (1994). The use of ultraviolet radiation to reduce Salmonella and psychrotrophic bacterial contamination on poultry carcasses. Poultry Science, 73(8), 1327–1333.PubMedCrossRefGoogle Scholar
  56. Xu, W., & Wu, C. (2016). The impact of pulsed light on decontamination, quality, and bacterial attachment of fresh raspberries. Food Microbiology, 57, 135–143.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peng Peng
    • 1
  • Paul Chen
    • 1
  • Dongjie Chen
    • 1
  • Min Addy
    • 1
  • Yanling Cheng
    • 1
  • Nan Zhou
    • 1
  • Charles Schiappacasse
    • 1
  • Yaning Zhang
    • 1
    • 2
  • Erik Anderson
    • 1
  • Juer Liu
    • 1
  • Yiwei Ma
    • 1
  • Roger Ruan
    • 1
    • 3
    Email author
  1. 1.Center for Biorefining, and Department of Bioproducts and Biosystems EngineeringUniversity of Minnesota Twin CitiesSt. PaulUSA
  2. 2.The Harbin Institute of TechnologyHaerbin ShiChina
  3. 3.Nanchang UniversityNanchangChina

Personalised recommendations