Advertisement

Impact of High-Pressure Processing on Food Quality

  • Mauro D. Santos
  • Rita S. Inácio
  • Liliana G. Fidalgo
  • Rui P. Queirós
  • Silvia A. Moreira
  • Ricardo V. Duarte
  • Ana M. P. Gomes
  • Ivonne Delgadillo
  • Jorge A. SaraivaEmail author
Chapter

Abstract

High-Pressure Processing (HPP) application is increasing at food industries as a possible alternative to heat treatments for food preservation and processing. It is being mainly applied to inactivate microorganisms and enzymes, with lower degradation of flavors and nutrients, minimizing the losses of beneficial ingredients, resulting in distinctive organoleptic properties of foods. Since HPP acts on volume compression, due to the low change in volume on low-molecular compounds, such as vitamins and other functional compounds, the effects of this technology are expected to be minimum on these compounds unlike thermal treatment. Alike, HPP has also a lower effect on flavor and color compounds of food products, compared to the color changes and formation of off-flavors caused by thermal pasteurization. Thus, in this chapter, HPP application on different food products will be addressed, i.e., fruits, vegetables, fish and meat products, milk and cheese, and its effects on the nutritional, textural and sensorial properties will be discussed.

References

  1. Adapa, S., Schmidt, K. A., & Toledo, R. (1997). Functional properties of skim milk processed with continuous high pressure throttling. Journal of Dairy Science, 80(9), 1941–1948.CrossRefGoogle Scholar
  2. Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.CrossRefGoogle Scholar
  3. Amanatidou, A., Schlüter, O., Lemkau, K., Gorris, L. G. M., Smid, E. J., & Knorr, D. (2000). Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon. Innovative Food Science & Emerging Technologies, 1(2), 87–98.CrossRefGoogle Scholar
  4. Angsupanich, K., & Ledward, D. A. (1998). High pressure treatment effects on cod (Gadus morhua) muscle. Food Chemistry, 63(1), 39–50.CrossRefGoogle Scholar
  5. Arnold, C., Schwarzenbolz, U., & Böhm, V. (2014). Carotenoids and chlorophylls in processed xanthophyll-rich food. LWT – Food Science and Technology, 57(1), 442–445.CrossRefGoogle Scholar
  6. Aubourg, S. P., Torres, J. A., Saraiva, J. A., Guerra-Rodríguez, E., & Vázquez, M. (2013). Effect of high-pressure treatments applied before freezing and frozen storage on the functional and sensory properties of Atlantic mackerel (Scomber scombrus). LWT – Food Science and Technology, 53(1), 100–106.CrossRefGoogle Scholar
  7. Barrett, D. M., & Lloyd, B. (2012). Advanced preservation methods and nutrient retention in fruits and vegetables. Journal of the Science of Food and Agriculture, 92(1), 7–22.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Basak, S., & Ramaswamy, H. S. (1998). Effect of high pressure processing on the texture of selected fruits and vegetables. Journal of Texture Studies, 29(5), 587–601.CrossRefGoogle Scholar
  9. Baxter, I. A., Easton, K., Schneebeli, K., & Whitfield, F. B. (2005). High pressure processing of Australian navel orange juices: Sensory analysis and volatile flavor profiling. Innovative Food Science & Emerging Technologies, 6(4), 372–387.CrossRefGoogle Scholar
  10. Beilken, S. L., Macfarlane, J. J., & Jones, P. N. (1990). Effect of high pressure during heat treatment on the wamer-bratzler shear force values of selected beef muscles. Journal of Food Science, 55(1), 15–18.CrossRefGoogle Scholar
  11. Blok Frandsen, H., Ejdrup Markedal, K., Martín-Belloso, O., Sánchez-Vega, R., Soliva-Fortuny, R., Sørensen, H., … Sørensen, J. C. (2014). Effects of novel processing techniques on glucosinolates and membrane associated myrosinases in broccoli. Polish Journal of Food and Nutrition Sciences, 64(1), 17–25.CrossRefGoogle Scholar
  12. Bolumar, T., Skibsted, L. H., & Orlien, V. (2012). Kinetics of the formation of radicals in meat during high pressure processing. Food Chemistry, 134(4), 2114–2120.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Calzada, J., Del Olmo, A., Picon, A., Gaya, P., & Nuñez, M. (2013). Proteolysis and biogenic amine buildup in high-pressure treated ovine milk blue-veined cheese. Journal of Dairy Science, 96(8), 4816–4829.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Calzada, J., del Olmo, A., Picon, A., & Nuñez, M. (2015). Effect of high pressure processing on the lipolysis, volatile compounds, odour and colour of cheese made from unpasteurized milk. Food and Bioprocess Technology, 8(5), 1076–1088.CrossRefGoogle Scholar
  15. Calzada, J., del Olmo, A., Picon, A., Gaya, P., & Nuñez, M. (2014a). Using high-pressure processing for reduction of proteolysis and prevention of over-ripening of raw milk cheese. Food and Bioprocess Technology, 7(5), 1404–1413.CrossRefGoogle Scholar
  16. Calzada, J., del Olmo, A., Picon, A., Gaya, P., & Nuñez, M. (2014b). Effect of high-pressure-processing on the microbiology, proteolysis, texture and flavour of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 37(2), 64–73.CrossRefGoogle Scholar
  17. Calzada, J., del Olmo, A., Picon, A., & Nuñez, M. (2014c). Effect of high-pressure-processing on lipolysis and volatile compounds of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 39(2), 232–239.CrossRefGoogle Scholar
  18. Capellas, M., Mor-Mur, M., Sendra, E., & Guamis, B. (2001). Effect of high-pressure processing on physico-chemical characteristics of fresh goats’ milk cheese (Mató). International Dairy Journal, 11(3), 165–173.CrossRefGoogle Scholar
  19. Chang, Y.-H., Wu, S.-J., Chen, B.-Y., Huang, H.-W., & Wang, C.-Y. (2017). Effect of high-pressure processing and thermal pasteurization on overall quality parameters of white grape juice. Journal of the Science of Food and Agriculture, 97(10), 3166–3172.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cheah, P. B., & Ledward, D. A. (1996). High pressure effects on lipid oxidation in minced pork. Meat Science, 43(2), 123–134.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cheah, P. B., & Ledward, D. A. (1997a). Catalytic mechanism of lipid oxidation following high pressure treatment in pork fat and meat. Journal of Food Science, 62(6), 1135–1139.CrossRefGoogle Scholar
  22. Cheah, P. B., & Ledward, D. A. (1997b). Inhibition of metmyoglobin formation in fresh beef by pressure treatment. Meat Science, 45(3), 411–418.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen, D., Xi, H., Guo, X., Qin, Z., Pang, X., Hu, X., … Wu, J. (2013). Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 19, 85–94.CrossRefGoogle Scholar
  24. Chéret, R., Chapleau, N., Delbarre-Ladrat, C., Verrez-Bagnis, V., & de Lamballerie, M. (2005). Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.). Journal of Food Science, 70(8), e477–e483.CrossRefGoogle Scholar
  25. Chevalier, D., Le Bail, A., & Ghoul, M. (2001). Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Research International, 34(5), 425–429.CrossRefGoogle Scholar
  26. Clariana, M., Guerrero, L., Sárraga, C., Díaz, I., Valero, Á., & García-Regueiro, J. A. (2011). Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period. Innovative Food Science & Emerging Technologies, 12(4), 456–465.CrossRefGoogle Scholar
  27. Contador, R., González-Cebrino, F., García-Parra, J., Lozano, M., & Ramírez, R. (2014). Effect of hydrostatic high pressure and thermal treatments on two types of pumpkin purée and changes during refrigerated storage. Journal of Food Processing and Preservation, 38(2), 704–712.CrossRefGoogle Scholar
  28. de Oliveira, M. M., Tribst, A. A. L., Leite Júnior, B. R. D. C., de Oliveira, R. A., & Cristianini, M. (2015). Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innovative Food Science & Emerging Technologies, 31, 45–53.CrossRefGoogle Scholar
  29. del Olmo, A., Calzada, J., & Nuñez, M. (2014). Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat “lacón”, a cured–cooked pork meat product. Innovative Food Science & Emerging Technologies, 23, 25–32.CrossRefGoogle Scholar
  30. Delgado, F. J., González-Crespo, J., Cava, R., & Ramírez, R. (2012). Changes in microbiology, proteolysis, texture and sensory characteristics of raw goat milk cheeses treated by high-pressure at different stages of maturation. LWT – Food Science and Technology, 48(2), 268–275.CrossRefGoogle Scholar
  31. Delgado, F. J., Rodríguez-Pinilla, J., Márquez, G., Roa, I., & Ramírez, R. (2015). Physicochemical, proteolysis and texture changes during the storage of a mature soft cheese treated by high-pressure hydrostatic. European Food Research and Technology, 240(6), 1167–1176.CrossRefGoogle Scholar
  32. Denoya, G. I., Vaudagna, S. R., & Polenta, G. (2015). Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT – Food Science and Technology, 62(1, Part 2), 801–806.CrossRefGoogle Scholar
  33. Dhineshkumar, V., Ramasamy, D., & Siddharth, M. (2016). High pressure processing technology in dairy processing: A review. Asian Journal of Dairy and Food Research, 35(2), 87–95.CrossRefGoogle Scholar
  34. Dörnenburg, H., & Knorr, D. (1998). Monitoring the impact of high-pressure processing on the biosynthesis of plant metabolites using plant cell cultures. Trends in Food Science & Technology, 9(10), 355–361.CrossRefGoogle Scholar
  35. Erkan, N., Üretener, G., & Alpas, H. (2010). Effect of high pressure (HP) on the quality and shelf life of red mullet (Mullus surmelutus). Innovative Food Science & Emerging Technologies, 11(2), 259–264.CrossRefGoogle Scholar
  36. Evert-Arriagada, K., Hernández-Herrero, M. M., Guamis, B., & Trujillo, A. J. (2014). Commercial application of high-pressure processing for increasing starter-free fresh cheese shelf-life. LWT – Food Science and Technology, 55(2), 498–505.CrossRefGoogle Scholar
  37. Evert-Arriagada, K., Hernández-Herrero, M. M., Juan, B., Guamis, B., & Trujillo, A. J. (2012). Effect of high pressure on fresh cheese shelf-life. Journal of Food Engineering, 110(2), 248–253.CrossRefGoogle Scholar
  38. Figueirêdo, B. C., Bragagnolo, N., Skibsted, L. H., & Orlien, V. (2015). Inhibition of cholesterol and polyunsaturated fatty acids oxidation through the use of annatto and bixin in high-pressure processed fish. Journal of Food Science, 80(8), C1646–C1653.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gao, G., Ren, P., Cao, X., Yan, B., Liao, X., Sun, Z., & Wang, Y. (2016). Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food and Bioproducts Processing, 100, 221–229.CrossRefGoogle Scholar
  40. García-Parra, J., González-Cebrino, F., Delgado, J., Cava, R., & Ramírez, R. (2016). High pressure assisted thermal processing of pumpkin purée: Effect on microbial counts, color, bioactive compounds and polyphenoloxidase enzyme. Food and Bioproducts Processing, 98, 124–132.CrossRefGoogle Scholar
  41. Garde, S., Arqués, J. L., Gaya, P., Medina, M., & Nuñez, M. (2007). Effect of high-pressure treatments on proteolysis and texture of ewes’ raw milk La Serena cheese. International Dairy Journal, 17(12), 1424–1433.CrossRefGoogle Scholar
  42. Gervilla, R., Ferragut, V., & Guamis, B. (2001). High hydrostatic pressure effects on color and milk-fat globule of ewe’s milk. Journal of Food Science, 66(6), 880–885.CrossRefGoogle Scholar
  43. Grossi, A., Søltoft-Jensen, J., Knudsen, J. C., Christensen, M., & Orlien, V. (2011). Synergistic cooperation of high pressure and carrot dietary fibre on texture and colour of pork sausages. Meat Science, 89(2), 195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gupta, R., Kopec, R. E., Schwartz, S. J., & Balasubramaniam, V. M. (2011). Combined pressure-temperature effects on carotenoid retention and bioaccessibility in tomato juice. Journal of Agricultural and Food Chemistry, 59(14), 7808–7817.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Guyon, C., Meynier, A., & de Lamballerie, M. (2016). Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends in Food Science & Technology, 50, 131–143.CrossRefGoogle Scholar
  46. Harte, F., Luedecke, L., Swanson, B., & Barbosa-Cánovas, G. V. (2003). Low-fat set yogurt made from milk subjected to combinations of high hydrostatic pressure and thermal processing. Journal of Dairy Science, 86(4), 1074–1082.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hartyáni, P., Dalmadi, I., Cserhalmi, Z., Kántor, D.-B., Tóth-Markus, M., & Sass-Kiss, Á. (2011). Physical–chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices. Innovative Food Science & Emerging Technologies, 12(3), 255–260.CrossRefGoogle Scholar
  48. Hayman, M. M., Baxter, I., O’Riordan, P. J., & Stewart, C. M. (2004). Effects of high-pressure processing on the safety, quality, and shelf life of ready-to-eat meats. Journal of Food Protection, 67(8), 1709–1718.PubMedCrossRefPubMedCentralGoogle Scholar
  49. He, Z., Huang, Y., Li, H., Qin, G., Wang, T., & Yang, J. (2012). Effect of high-pressure treatment on the fatty acid composition of intramuscular lipid in pork. Meat Science, 90(1), 170–175.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hernández-Carrión, M., Hernando, I., & Quiles, A. (2014). High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innovative Food Science & Emerging Technologies, 26, 76–85.CrossRefGoogle Scholar
  51. Homma, N., Ikeuchi, Y., & Suzuki, A. (1994). Effects of high pressure treatment on the proteolytic enzymes in meat. Meat Science, 38(2), 219–228.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., & Wang, C.-Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1–8.CrossRefGoogle Scholar
  53. Huppertz, T., Kelly, A. L., & Fox, P. F. (2002). Effects of high pressure on constituents and properties of milk. International Dairy Journal, 12(7), 561–572.CrossRefGoogle Scholar
  54. Hurtado, A., Guàrdia, M. D., Picouet, P., Jofré, A., Ros, J. M., & Bañón, S. (2017). Stabilisation of red fruit-based smoothies by high-pressure processing. Part II: Effects on sensory quality and selected nutrients. Journal of the Science of Food and Agriculture, 97(3), 777–783.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hurtado, J. L., Montero, P., & Borderias, A. J. (2000). Extension of shelf life of chilled hake (Merluccius capensis) by high pressure/Prolongacion de la vida util de merluza (Merluccius capensis) sometida a altas presiones conservada en refrigeracion. Food Science and Technology International, 6(3), 243–249.CrossRefGoogle Scholar
  56. Jacobo-Velázquez, D. A., Cuéllar-Villarreal, M. d. R., Welti-Chanes, J., Cisneros-Zevallos, L., Ramos-Parra, P. A., & Hernández-Brenes, C. (2017). Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science & Technology, 60, 80–87.CrossRefGoogle Scholar
  57. Juan, B., Ferragut, V., Guamis, B., & Trujillo, A.-J. (2008). The effect of high-pressure treatment at 300MPa on ripening of ewes’ milk cheese. International Dairy Journal, 18(2), 129–138.CrossRefGoogle Scholar
  58. Jung, L.-S., Lee, S. H., Kim, S., & Ahn, J. (2013). Effect of high hydrostatic pressure on the quality-related properties of carrot and spinach. Food Science and Biotechnology, 22(1), 189–195.CrossRefGoogle Scholar
  59. Kaur, L., Astruc, T., Vénien, A., Loison, O., Cui, J., Irastorza, M., & Boland, M. (2016). High pressure processing of meat: Effects on ultrastructure and protein digestibility. Food & Function, 7(5), 2389–2397.CrossRefGoogle Scholar
  60. Kebede, B., Grauwet, T., Andargie, T., Sempiri, G., Palmers, S., Hendrickx, M., & Van Loey, A. (2017). Kinetics of Strecker aldehyde formation during thermal and high pressure high temperature processing of carrot puree. Innovative Food Science & Emerging Technologies, 39, 88–93.CrossRefGoogle Scholar
  61. Kebede, B. T., Grauwet, T., Mutsokoti, L., Palmers, S., Vervoort, L., Hendrickx, M., & Van Loey, A. (2014). Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Research International, 56, 218–225.CrossRefGoogle Scholar
  62. Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867.CrossRefGoogle Scholar
  63. Lakshmanan, R., Patterson, M. F., & Piggott, J. R. (2005). Effects of high-pressure processing on proteolytic enzymes and proteins in cold-smoked salmon during refrigerated storage. Food Chemistry, 90(4), 541–548.CrossRefGoogle Scholar
  64. Landl, A., Abadias, M., Sárraga, C., Viñas, I., & Picouet, P. A. (2010). Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innovative Food Science & Emerging Technologies, 11(4), 557–564.CrossRefGoogle Scholar
  65. Liu, F., Zhang, X., Zhao, L., Wang, Y., & Liao, X. (2016). Potential of high-pressure processing and high-temperature/short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innovative Food Science & Emerging Technologies, 34, 51–58.CrossRefGoogle Scholar
  66. López-Fandiño, R., Fuente, M. A. D. L., Ramos, M., & Olano, A. (1998). Distribution of minerals and proteins between the soluble and colloidal phases of pressurized milks from different species. Journal of Dairy Research, 65(1), 69–78.CrossRefGoogle Scholar
  67. Ma, H., & Ledward, D. A. (2013). High pressure processing of fresh meat - is it worth it? Meat Science, 95(4), 897–903.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ma, H.-J., & Ledward, D. A. (2004). High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, 68(3), 347–355.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ma, H. J., Ledward, D. A., Zamri, A. I., Frazier, R. A., & Zhou, G. H. (2007). Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chemistry, 104(4), 1575–1579.CrossRefGoogle Scholar
  70. Macfarlane, J. J. (1973). Pre-rigor pressurization of muscle: Effects on pH, shear value and taste panel assessment. Journal of Food Science, 38(2), 294–298.CrossRefGoogle Scholar
  71. Marcos, B., Aymerich, T., Dolors Guardia, M., & Garriga, M. (2007). Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat Science, 76(1), 46–53.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Marcos, B., Kerry, J. P., & Mullen, A. M. (2010). High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Science, 85(1), 115–120.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Marszałek, K., Woźniak, Ł., Kruszewski, B., & Skąpska, S. (2017). The Effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences, 18(2).  https://doi.org/10.3390/ijms18020277PubMedCentralCrossRefGoogle Scholar
  74. Martínez-Onandi, N., Castioni, A., San Martín, E., Rivas-Cañedo, A., Nuñez, M., Torriani, S., & Picon, A. (2017). Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 241, 298–307.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Martínez-Onandi, N., Rivas-Cañedo, A., Nuñez, M., & Picon, A. (2016). Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham. Meat Science, 111, 130–138.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Martínez-Rodríguez, Y., Acosta-Muñiz, C., Olivas, G. I., Guerrero-Beltrán, J., Rodrigo-Aliaga, D., & Sepúlveda, D. R. (2012). High hydrostatic pressure processing of cheese. Comprehensive Reviews in Food Science and Food Safety, 11(4), 399–416.CrossRefGoogle Scholar
  77. McArdle, R., Marcos, B., Kerry, J. P., & Mullen, A. (2010). Monitoring the effects of high pressure processing and temperature on selected beef quality attributes. Meat Science, 86(3), 629–634.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Medina-Meza, I. G., Barnaba, C., & Barbosa-Cánovas, G. V. (2014). Effects of high pressure processing on lipid oxidation: A review. Innovative Food Science & Emerging Technologies, 22, 1–10.CrossRefGoogle Scholar
  79. Miguel-Pintado, C., Nogales, S., Fernández-León, A. M., Delgado-Adámez, J., Hernández, T., Lozano, M., … Ramírez, R. (2013). Effect of hydrostatic high pressure processing on nectarine halves pretreated with ascorbic acid and calcium during refrigerated storage. LWT – Food Science and Technology, 54(1), 278–284.CrossRefGoogle Scholar
  80. Moltó-Puigmartí, C., Permanyer, M., Castellote, A. I., & López-Sabater, M. C. (2011). Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chemistry, 124(3), 697–702.CrossRefGoogle Scholar
  81. Montiel, R., De Alba, M., Bravo, D., Gaya, P., & Medina, M. (2012). Effect of high pressure treatments on smoked cod quality during refrigerated storage. Food Control, 23(2), 429–436.  https://doi.org/10.1016/j.foodcont.2011.08.011CrossRefGoogle Scholar
  82. Morton, J. D., Pearson, R. G., Lee, H. Y.-Y., Smithson, S., Mason, S. L., & Bickerstaffe, R. (2017). High pressure processing improves the tenderness and quality of hot-boned beef. Meat Science, 133, 69–74.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Murchie, L. W., Cruz-Romero, M., Kerry, J. P., Linton, M., Patterson, M. F., Smiddy, M., & Kelly, A. L. (2005). High pressure processing of shellfish: A review of microbiological and other quality aspects. Innovative Food Science & Emerging Technologies, 6(3), 257–270.CrossRefGoogle Scholar
  84. O’Reilly, C. E., Kelly, A. L., Murphy, P. M., & Beresford, T. P. (2001). High pressure treatment: Applications in cheese manufacture and ripening. Trends in Food Science & Technology, 12(2), 51–59.CrossRefGoogle Scholar
  85. Oey, I., Van der Plancken, I., Van Loey, A., & Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? Trends in Food Science & Technology, 19(6), 300–308.CrossRefGoogle Scholar
  86. Okpala, C. O. R., Piggott, J. R., & Schaschke, C. J. (2010). Influence of high-pressure processing (HPP) on physico-chemical properties of fresh cheese. Innovative Food Science & Emerging Technologies, 11(1), 61–67.CrossRefGoogle Scholar
  87. Orlien, V., Hansen, E., & Skibsted, L. H. (2000). Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: Critical working pressure in relation to oxidation mechanism. European Food Research and Technology, 211(2), 99–104.CrossRefGoogle Scholar
  88. Ortea, I., Rodríguez, A., Tabilo-Munizaga, G., Pérez-Won, M., & Aubourg, S. P. (2010). Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. European Food Research and Technology, 230(6), 925–934.CrossRefGoogle Scholar
  89. Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT – Food Science and Technology, 68, 98–104.CrossRefGoogle Scholar
  90. Pasha, I., Saeed, F., Sultan, M. T., Khan, M. R., & Rohi, M. (2014). Recent developments in minimal processing: A tool to retain nutritional quality of food. Critical Reviews in Food Science and Nutrition, 54(3), 340–351.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Patras, A., Brunton, N., Da Pieve, S., Butler, F., & Downey, G. (2009). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies, 10(1), 16–22.CrossRefGoogle Scholar
  92. Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313.CrossRefGoogle Scholar
  93. Picouet, P. A., Hurtado, A., Jofré, A., Bañon, S., Ros, J.-M., & Guàrdia, M. D. (2016). Effects of thermal and high-pressure treatments on the microbiological, nutritional and sensory quality of a multi-fruit smoothie. Food and Bioprocess Technology, 9(7), 1219–1232.CrossRefGoogle Scholar
  94. Plaza, L., Sánchez-Moreno, C., De Ancos, B., Elez-Martínez, P., Martín-Belloso, O., & Cano, M. P. (2011). Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT – Food Science and Technology, 44(4), 834–839.CrossRefGoogle Scholar
  95. Ramirez-Suarez, J. C., & Morrissey, M. T. (2006). Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innovative Food Science & Emerging Technologies, 7(1), 19–27.CrossRefGoogle Scholar
  96. Rivas-Cañedo, A., Fernández-García, E., & Nuñez, M. (2009). Volatile compounds in fresh meats subjected to high pressure processing: Effect of the packaging material. Meat Science, 81(2), 321–328.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rux, G., Schlüter, O., Geyer, M., & Herppich, W. B. (2017). Characterization of high hydrostatic pressure effects on fresh produce cell turgor using pressure probe analyses. Postharvest Biology and Technology, 132, 188–194.CrossRefGoogle Scholar
  98. Ruxton, C. H. S., Calder, P. C., Reed, S. C., & Simpson, M. J. A. (2005). The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutrition Research Reviews, 18(1), 113–129.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Saldo, J., Fernández, A., Sendra, E., Butz, P., Tauscher, B., & Guamis, B. (2003). High pressure treatment decelerates the lipolysis in a caprine cheese. Food Research International, 36(9), 1061–1068.CrossRefGoogle Scholar
  100. Saldo, J., McSweeney, P. L. H., Sendra, E., Kelly, A. L., & Guamis, B. (2002). Proteolysis in caprine milk cheese treated by high pressure to accelerate cheese ripening. International Dairy Journal, 12(1), 35–44.CrossRefGoogle Scholar
  101. Sánchez, C., Baranda, A. B., & Martínez de Marañón, I. (2014). The effect of high pressure and high temperature processing on carotenoids and chlorophylls content in some vegetables. Food Chemistry, 163, 37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Sánchez-Moreno, C., de Ancos, B., Plaza, L., Elez-Martínez, P., & Cano, M. P. (2009). Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Critical Reviews in Food Science and Nutrition, 49(6), 552–576.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Sánchez-Moreno, C., Plaza, L., De Ancos, B., & Cano, M. P. (2003). Vitamin C, provitamin A carotenoids, and other carotenoids in high-pressurized orange juice during refrigerated storage. Journal of Agricultural and Food Chemistry, 51(3), 647–653.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sandra, S., Stanford, M. A., & Goddik, L. M. (2004). The use of high-pressure processing in the production of Queso Fresco cheese. Journal of Food Science, 69(4), FEP153–FEP158.CrossRefGoogle Scholar
  106. Sazonova, S., Galoburda, R., & Gramatina, I. (2017). Application of high-pressure processing for safety and shelf-life quality of meat – a review. Presented at the Baltic Conference on Food Science and Technology FOODBALT “Food for consumer well-being.”  https://doi.org/10.22616/FoodBalt.2017.001
  107. Sequeira-Munoz, A., Chevalier, D., LeBail, A., Ramaswamy, H. S., & Simpson, B. K. (2006). Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innovative Food Science & Emerging Technologies, 7(1), 13–18.CrossRefGoogle Scholar
  108. Sikes, A., Tornberg, E., & Tume, R. (2010). A proposed mechanism of tenderising post-rigor beef using high pressure–heat treatment. Meat Science, 84(3), 390–399.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Sikes, A. L., & Warner, R. (2016). Application of high hydrostatic pressure for meat tenderization. In K. Knoerzer, P. Juliano, & G. Smithers (Eds.), Innovative food processing technologies: Extraction, separation, component modification and process intensification (pp. 259–290), Woodhead Publishing, Cambridge.Google Scholar
  110. Souza, C. M., Boler, D. D., Clark, D. L., Kutzler, L. W., Holmer, S. F., Summerfield, J. W., … Killefer, J. (2011). The effects of high pressure processing on pork quality, palatability, and further processed products. Meat Science, 87(4), 419–427.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Sun, X. D., & Holley, R. A. (2010). High hydrostatic pressure effects on the texture of meat and meat products. Journal of Food Science, 75(1), R17–R23.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Tamm, A., Bolumar, T., Bajovic, B., & Toepfl, S. (2016). Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl. Innovative Food Science & Emerging Technologies, 36, 294–302.CrossRefGoogle Scholar
  113. Teixeira, B., Fidalgo, L., Mendes, R., Costa, G., Cordeiro, C., Marques, A., … Nunes, M. L. (2013). Changes of enzymes activity and protein profiles caused by high-pressure processing in sea bass (Dicentrarchus labrax) fillets. Journal of Agricultural and Food Chemistry, 61(11), 2851–2860.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Teixeira, B., Marques, A., Mendes, R., Gonçalves, A., Fidalgo, L., Oliveira, M., … Nunes, M. L. (2014). Effects of high-pressure processing on the quality of sea bass (Dicentrarchus labrax) fillets during refrigerated storage. Food and Bioprocess Technology, 7(5), 1333–1343.CrossRefGoogle Scholar
  115. Tewari, S., Sehrawat, R., Nema, P. K., & Kaur, B. P. (2017). Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: A review. Journal of Food Biochemistry, 41(1), e12319.  https://doi.org/10.1111/jfbc.12319CrossRefGoogle Scholar
  116. Torres, B., Tiwari, B. K., Patras, A., Cullen, P. J., Brunton, N., & O’Donnell, C. P. (2011). Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innovative Food Science & Emerging Technologies, 12(2), 93–97.CrossRefGoogle Scholar
  117. Trejo Araya, X. I., Hendrickx, M., Verlinden, B. E., Van Buggenhout, S., Smale, N. J., Stewart, C., & John Mawson, A. (2007). Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. Journal of Food Engineering, 80(3), 873–884.CrossRefGoogle Scholar
  118. Tribst, A. A. L., Leite Júnior, B. R. D. C., de Oliveira, M. M., & Cristianini, M. (2016). High pressure processing of cocoyam, Peruvian carrot and sweet potato: Effect on oxidative enzymes and impact in the tuber color. Innovative Food Science & Emerging Technologies, 34, 302–309.CrossRefGoogle Scholar
  119. Trujillo, A. J., Castro, N., Quevedo, J. M., Argüello, A., Capote, J., & Guamis, B. (2007). Effect of heat and high-pressure treatments on microbiological quality and immunoglobulin G stability of caprine colostrum. Journal of Dairy Science, 90(2), 833–839.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., & Guamis, B. (2002). Applications of high-hydrostatic pressure on milk and dairy products: A review. Innovative Food Science & Emerging Technologies, 3(4), 295–307.CrossRefGoogle Scholar
  121. Valdramidis, V. P., Graham, W. D., Beattie, A., Linton, M., McKay, A., Fearon, A. M., & Patterson, M. F. (2009). Defining the stability interfaces of apple juice: Implications on the optimisation and design of High Hydrostatic Pressure treatment. Innovative Food Science & Emerging Technologies, 10(4), 396–404.CrossRefGoogle Scholar
  122. Van Hekken, D. L., Tunick, M. H., Farkye, N. Y., & Tomasula, P. M. (2013). Effect of hydrostatic high-pressure processing on the chemical, functional, and rheological properties of starter-free Queso Fresco. Journal of Dairy Science, 96(10), 6147–6160.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Vázquez-Gutiérrez, J. L., Quiles, A., Hernando, I., & Pérez-Munuera, I. (2011). Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharvest Biology and Technology, 61(2), 137–144.CrossRefGoogle Scholar
  124. Voigt, D. D., Chevalier, F., Qian, M. C., & Kelly, A. L. (2010). Effect of high-pressure treatment on microbiology, proteolysis, lipolysis and levels of flavour compounds in mature blue-veined cheese. Innovative Food Science & Emerging Technologies, 11(1), 68–77.CrossRefGoogle Scholar
  125. Wang, C.-Y., Huang, H.-W., Hsu, C.-P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56(4), 527–540.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Wang, Q., Zhao, X., Ren, Y., Fan, E., Chang, H., & Wu, H. (2013). Effects of high pressure treatment and temperature on lipid oxidation and fatty acid composition of yak (Poephagus grunniens) body fat. Meat Science, 94(4), 489–494.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Wang, R., Ding, S., Hu, X., Liao, X., & Zhang, Y. (2016). Effects of high hydrostatic pressure on chlorophylls and chlorophyll–protein complexes in spinach. European Food Research and Technology, 242(9), 1533–1543.CrossRefGoogle Scholar
  128. Wolbang, C. M., Fitos, J. L., & Treeby, M. T. (2008). The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innovative Food Science & Emerging Technologies, 9(2), 196–200.CrossRefGoogle Scholar
  129. Yagiz, Y., Kristinsson, H. G., Balaban, M. O., & Marshall, M. R. (2007). Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). Journal of Food Science, 72(9), C509–C515.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yagiz, Y., Kristinsson, H. G., Balaban, M. O., Welt, B. A., Ralat, M., & Marshall, M. R. (2009). Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chemistry, 116(4), 828–835.CrossRefGoogle Scholar
  131. Yang, H., Khan, M. A., Yu, X., Zheng, H., Han, M., Xu, X., & Zhou, G. (2016). Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing. Meat Science, 121, 79–87.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Ye, A., Anema, S. G., & Singh, H. (2004). High-pressure-induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk. Journal of Dairy Science, 87(12), 4013–4022.PubMedCrossRefGoogle Scholar
  133. Yi, J., Kebede, B. T., Hai Dang, D. N., Buvé, C., Grauwet, T., Van Loey, A., … Hendrickx, M. (2017). Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT, 75, 85–92.CrossRefGoogle Scholar
  134. Yi, J., Feng, H., Bi, J., Zhou, L., Zhou, M., Cao, J., & Li, J. (2016). High hydrostatic pressure induced physiological changes and physical damages in asparagus spears. Postharvest Biology and Technology, 118, 1–10.CrossRefGoogle Scholar
  135. Zamri, A. I., Ledward, D. A., & Frazier, R. A. (2006). Effect of combined heat and high-pressure treatments on the texture of chicken breast muscle (Pectoralis fundus). Journal of Agricultural and Food Chemistry, 54(8), 2992–2996.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Zhang, C., Trierweiler, B., Li, W., Butz, P., Xu, Y., Rüfer, C. E., … Zhao, X. (2011). Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, 126(1), 254–260.CrossRefGoogle Scholar
  137. Zhang, F., Dong, P., Feng, L., Chen, F., Wu, J., Liao, X., & Hu, X. (2012). Textural changes of yellow peach in pouches processed by high hydrostatic pressure and thermal processing during storage. Food and Bioprocess Technology, 5(8), 3170–3180.CrossRefGoogle Scholar
  138. Zhao, G., Zhang, R., & Zhang, M. (2017). Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. International Journal of Food Science & Technology, 52(1), 3–12.CrossRefGoogle Scholar
  139. Zhou, C.-L., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., … Li, Q.-H. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical–chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science & Emerging Technologies, 21, 24–34.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mauro D. Santos
    • 1
  • Rita S. Inácio
    • 1
    • 2
  • Liliana G. Fidalgo
    • 1
  • Rui P. Queirós
    • 1
  • Silvia A. Moreira
    • 1
    • 2
  • Ricardo V. Duarte
    • 1
    • 2
  • Ana M. P. Gomes
    • 2
  • Ivonne Delgadillo
    • 1
  • Jorge A. Saraiva
    • 1
    Email author
  1. 1.QOPNA, Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.CBQF/Faculty of BiotechnologyCatholic University of PortugalPortoPortugal

Personalised recommendations