Advertisement

Impact of Ultrasound on Food Constituents

  • Mladen BrnčićEmail author
  • Jana Šic Žlabur
Chapter

Abstract

Ultrasound is one of the non-invasive technologies, which successfully find widespread use in numerous processes in food technology. It represents one of the novel technologies that in a very short time rapidly found evolution and implementation in various food industry processes and commercial products. Some of the mentioned food processes in which ultrasound finds its application include drying, freezing, homogenization, sterilization, extraction, bleaching, crystallization, emulsification, and filtration. Specific equipment required in mentioned food industry applications is constructed to fit ultrasound principles and nowadays successfully applied even at the level of larger capacity and industrial scale. All mentioned prove that ultrasound is successfully implemented and commercialized in the food industry and for the food products such as fruits and vegetables (dried, juices), meat, and dairy products (milk, cheese, chocolate). In this chapter, the impact of ultrasounds on food constituents was reviewed.

References

  1. Aadil, R. M., Zeng, X.-A., Ali, A., Zeng, F., Farooq, M. A., Han, Z., … Jabbar, S. (2015). Influence of different pulsed electric field strengths on the quality of the grapefruit juice. International Journal of Food Science and Technology, 50(10), 2290–2296.CrossRefGoogle Scholar
  2. Aadil, R. M., Zeng, X.-A., Han, Z., & Sun, D.-W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., … Zeng, X. (2013). Effect of ultrasound on different quality parameters of apple juice. Ultrasonics Sonochemistry, 20(5), 1182–1187.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Abismaïl, B., Canselier, J. P., Wilhelm, A. M., Delmas, H., & Gourdon, C. (1999). Emulsification by ultrasound: Drop size distribution and stability. Ultrasonics Sonochemistry, 6(1), 75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aburto, N. J., Ziolkovska, A., Hooper, L., Elliott, P., Cappuccio, F. P., & Meerpohl, J. J. (2013). Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ, 346, f1326.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.CrossRefGoogle Scholar
  7. Afoakwa, E. O., Paterson, A., & Fowler, M. (2007). Factors influencing rheological and textural qualities in chocolate – a review. Trends in Food Science & Technology, 18(6), 290–298.CrossRefGoogle Scholar
  8. Alarcon-Rojo, A. D., Janacua, H., Rodriguez, J. C., Paniwnyk, L., & Mason, T. J. (2015). Power ultrasound in meat processing. Meat Science, 107, 86–93.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Alexandre, E. M. C., Brandão, T. R. S., & Silva, C. L. M. (2012). Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. Journal of Food Engineering, 108(3), 417–426.CrossRefGoogle Scholar
  10. Alighourchi, H. R., Barzegar, M., Sahari, M. A., & Abbasi, S. (2013). Effect of sonication on anthocyanins, total phenolic content, and antioxidant capacity of pomegranate juices. International Food Research Journal, 20(4), 1703–1709.Google Scholar
  11. Alligar, H. (1975). Ultrasonic disruption. American Laboratory, 10, 75–85.Google Scholar
  12. Alvarado, C., & McKee, S. (2007). Marination to improve functional properties and safety of poultry meat. The Journal of Applied Poultry Research, 16(1), 113–120.CrossRefGoogle Scholar
  13. Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O. E., & Pilosof, A. M. R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108(3), 463–472.CrossRefGoogle Scholar
  14. Ashokkumar, M., Kentish, S., Lee, J., Zisu, B., Palmer, M., & Augustin, M. (2009). Processing of dairy ingredients by ultrasonication. Patent number: WO2009/079691A1.Google Scholar
  15. Ashokkumar, M., Lee, J., Zisu, B., Bhaskarcharya, R., Palmer, M., & Kentish, S. (2009). Hot topic: Sonication increases the heat stability of whey proteins. Journal of Dairy Science, 92(11), 5353–5356.PubMedCrossRefGoogle Scholar
  16. Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versteeg, C. K. (2008). Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science & Emerging Technologies, 9(2), 155–160.CrossRefGoogle Scholar
  17. Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96–109.CrossRefGoogle Scholar
  18. Barekat, S., & Soltanizadeh, N. (2017). Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innovative Food Science & Emerging Technologies, 39, 223–229.CrossRefGoogle Scholar
  19. Behrend, O., & Schubert, H. (2001). Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrasonics Sonochemistry, 8(3), 271–276.PubMedCrossRefGoogle Scholar
  20. Bernal, V., & Jelen, P. (1985). Thermal stability of whey proteins – a calorimetric study. Journal of Dairy Science, 68(11), 2847–2852.CrossRefGoogle Scholar
  21. Bhat, R., Kamaruddin, N. S. B. C., Min-Tze, L., & Karim, A. A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6), 1295–1300.PubMedCrossRefGoogle Scholar
  22. Bosiljkov, T., Tripalo, B., Brnčić, M., Ježek, D., Karlović, S., & Jagušt, I. (2011). Influence of high intensity ultrasound with different probe diameter on the degree of homogenization (variance) and physical properties of cow milk. African Journal of Biotechnology, 10(1), 34–41.Google Scholar
  23. Brnčić, M., Bosiljkov, T., Ukrainczyk, M., Tripalo, B., Brnčić, S. R., Karlović, S., … Topić, D. V. (2011). Influence of whey protein addition and feed moisture content on chosen physicochemical properties of directly expanded corn extrudates. Food and Bioprocess Technology, 4(7), 1296–1306.CrossRefGoogle Scholar
  24. Brnčić, M., Ježek, D., Rimac Brnčić, S., Bosiljkov, T., & Tripalo, B. (2008). Influence of whey protein concentrate addition on textural properties of corn flour extrudates. Mljekarstvo, 58(2), 131–149.Google Scholar
  25. Brnčić, M., Karlović, S., Rimac Brnčić, S., Bosiljkov, T., Ježek, D., & Tripalo, B. (2010). Textural properties of infra red dried apple slices as affected by high power ultrasound pre-treatment. African Journal of Biotechnology, 9(41), 6907–6915.Google Scholar
  26. Brnčić, M., Tripalo, B., Brncic, S. R., Karlovic, S., Zupan, A., & Herceg, Z. (2009). Evaluation of textural properties for whey enriched direct extruded and puffed corn based products. Bulgarian Journal of Agricultural Science, 15(3), 204–213.Google Scholar
  27. Brnčić, M., Tripalo, B., Penava, A., Karlović, D., Ježek, D., Vikić Topić, D., … Bosiljov, T. (2009). Applications of power ultrasound for foodstuffs processing. Croatian Journal of Food Technology, Biotechnology and Nutrition, 1–2, 32–37.Google Scholar
  28. Bund, R. K., & Pandit, A. B. (2007a). Rapid lactose recovery from paneer whey using sonocrystallization: A process optimization. Chemical Engineering and Processing: Process Intensification, 46(9), 846–850.CrossRefGoogle Scholar
  29. Bund, R. K., & Pandit, A. B. (2007b). Sonocrystallization: Effect on lactose recovery and crystal habit. Ultrasonics Sonochemistry, 14(2), 143–152.PubMedCrossRefGoogle Scholar
  30. Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H., & Wu, F. (2010). Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21(4), 529–532.CrossRefGoogle Scholar
  31. Carbonell-Capella, J. M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Quality parameters, bioactive compounds and their correlation with antioxidant capacity of commercial fruit-based baby foods. Food Science and Technology International, 20(7), 479–487.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cárcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76(4), 611–619.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Casiraghi, E., Alamprese, C., & Pompei, C. (2007). Cooked ham classification on the basis of brine injection level and pork breeding country. LWT – Food Science and Technology, 40(1), 164–169.CrossRefGoogle Scholar
  34. Chandrapala, J., Martin, G. J. O., Zisu, B., Kentish, S. E., & Ashokkumar, M. (2012). The effect of ultrasound on casein micelle integrity. Journal of Dairy Science, 95(12), 6882–6890.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chandrapala, J., Oliver, C., Kentish, S., & Ashokkumar, M. (2012). Ultrasonics in food processing. Ultrasonics Sonochemistry, 19(5), 975–983.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chandrapala, J., Zisu, B., Kentish, S., & Ashokkumar, M. (2012). The effects of high-intensity ultrasound on the structural and functional properties of α-Lactalbumin, β-Lactoglobulin and their mixtures. Food Research International, 48(2), 940–943.CrossRefGoogle Scholar
  37. Chandrapala, J., Zisu, B., Kentish, S., & Ashokkumar, M. (2013). Influence of ultrasound on chemically induced gelation of micellar casein systems. The Journal of Dairy Research, 80(2), 138–143.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., & Ashokkumar, M. (2011). Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry, 18(5), 951–957.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chang, H.-J., Xu, X.-L., Zhou, G.-H., Li, C.-B., & Huang, M. (2012). Effects of characteristics changes of collagen on meat physicochemical properties of beef semitendinosus muscle during ultrasonic processing. Food and Bioprocess Technology, 5(1), 285–297.CrossRefGoogle Scholar
  40. Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Chow, R., Blindt, R., Chivers, R., & Povey, M. (2003). The sonocrystallisation of ice in sucrose solutions: Primary and secondary nucleation. Ultrasonics, 41(8), 595–604.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cichoski, A. J., Rampelotto, C., Silva, M. S., de Moura, H. C., Terra, N. N., Wagner, R., … Barin, J. S. (2015). Ultrasound-assisted post-packaging pasteurization of sausages. Innovative Food Science & Emerging Technologies, 30, 132–137.CrossRefGoogle Scholar
  43. Coakley, W. T., & Nyborg, W. L. (1978). Ultrasound: Its applications in medicine and biology, part 1. In Cavitation; dynamics of gas bubbles; applications (pp. 77–153). New York, NY: Elsevier Scientific Publishing.Google Scholar
  44. Deora, N. S., Misra, N. N., Deswal, A., Mishra, H. N., Cullen, P. J., & Tiwari, B. K. (2013). Ultrasound improved crystallization in food processing. Food Engineering Reviews, 5(1), 36–44.CrossRefGoogle Scholar
  45. Dias, D. d. R. C., Barros, Z. M. P., de Carvalho, C. B. O., Honorato, F. A., Guerra, N. B., & Azoubel, P. M. (2015). Effect of sonication on soursop juice quality. LWT – Food Science and Technology, 62(1, Part 2), 883–889.CrossRefGoogle Scholar
  46. Dickens, J. A., Lyon, C. E., & Wilson, R. L. (1991). Effect of ultrasonic radiation on some physical characteristics of broiler breast muscle and cooked meat. Poultry Science, 70(2), 389–396.CrossRefGoogle Scholar
  47. Dincer, T. D., Zisu, B., Vallet, C. G. M. R., Jayasena, V., Palmer, M., & Weeks, M. (2014). Sonocrystallisation of lactose in an aqueous system. International Dairy Journal, 35(1), 43–48.CrossRefGoogle Scholar
  48. Dolatowski, Z. J., & Stadnik, J. (2007). Effect of sonication on technological properties of beef. Visnyk of Dnipropetrovsk University. Biology, Ecology, 15(1), 220–223.CrossRefGoogle Scholar
  49. Drosou, C., Kyriakopoulou, K., Bimpilas, A., Tsimogiannis, D., & Krokida, M. (2015). A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Industrial Crops and Products, 75, 141–149.CrossRefGoogle Scholar
  50. Dujmić, F., Brnčić, M., Karlović, S., Bosiljkov, T., Ježek, D., Tripalo, B., & Mofardin, I. (2013). Ultrasound-assisted infrared drying of pear slices: Textural issues. Journal of Food Process Engineering, 36(3), 397–406.CrossRefGoogle Scholar
  51. Ertugay, M. F., Sengül, M., & Sengül, M. (2004). Effect of ultrasound treatment on milk homogenization and particle size distribution of fat. Turkish Journal of Veterinary & Animal Sciences, 28, 303–308.Google Scholar
  52. Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82(2), 261–267.CrossRefGoogle Scholar
  53. Frydenberg, R. P., Hammershøj, M., Andersen, U., & Wiking, L. (2013). Ultrasonication affects crystallization mechanisms and kinetics of anhydrous milk fat. Crystal Growth & Design, 13(12), 5375–5382.CrossRefGoogle Scholar
  54. Galvan d’Alessandro, L., Kriaa, K., Nikov, I., & Dimitrov, K. (2012). Ultrasound assisted extraction of polyphenols from black chokeberry. Separation and Purification Technology, 93, 42–47.CrossRefGoogle Scholar
  55. González-González, L., Luna-Rodríguez, L., Carrillo-López, L. M., Alarcón-Rojo, A. D., García-Galicia, I., & Reyes-Villagrana, R. (2017). Ultrasound as an alternative to conventional marination: Acceptability and mass transfer. Journal of Food Quality.  https://doi.org/10.1155/2017/8675720Google Scholar
  56. Hartel, R. W. (2013). Advances in food crystallization. Annual Review of Food Science and Technology, 4, 277–292.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Higaki, K., Ueno, S., Koyano, T., & Sato, K. (2001). Effects of ultrasonic irradiation on crystallization behavior of tripalmitoylglycerol and cocoa butter. Journal of the American Oil Chemists’ Society, 78(5), 513–518.CrossRefGoogle Scholar
  58. Hu, H., Wu, J., Li-Chan, E. C. Y., Zhu, L., Zhang, F., Xu, X., … Pan, S. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647–655.CrossRefGoogle Scholar
  59. Huff-Lonergan, E. (2010). Water-holding capacity of fresh meat. American Meat Science Association, 1–8.Google Scholar
  60. Huff-Lonergan, E., & Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science, 71(1), 194–204.PubMedCrossRefGoogle Scholar
  61. Inguglia, E. S., Zhang, Z., Tiwari, B. K., Kerry, J. P., & Burgess, C. M. (2017). Salt reduction strategies in processed meat products – A review. Trends in Food Science & Technology, 59, 70–78.CrossRefGoogle Scholar
  62. Istrati, D. (2008). The influence of enzymatic tenderization with papain on functional properties of adult beef. Journal of Agroalimentary Processes and Technologies, 14, 140–146.Google Scholar
  63. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202.CrossRefGoogle Scholar
  64. Jafari, S. M., He, Y., & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–488.CrossRefGoogle Scholar
  65. Jiménez-Colmenero, F. (2013). Potential applications of multiple emulsions in the development of healthy and functional foods. Food Research International, 52(1), 64–74.CrossRefGoogle Scholar
  66. Jincai, Z., Shaoying, Z., & Rixian, Y. (2013). Ultrasonic enhanced walnut protein emulsifying property. Journal of Food Processing & Technology, 4(7).  https://doi.org/10.4172/2157-7110.1000244
  67. Juang, R.-S., & Lin, K.-H. (2004). Ultrasound-assisted production of W/O emulsions in liquid surfactant membrane processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 238(1), 43–49.CrossRefGoogle Scholar
  68. Juliano, P., Torkamani, A. E., Leong, T., Kolb, V., Watkins, P., Ajlouni, S., & Singh, T. K. (2014). Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrasonics Sonochemistry, 21(6), 2165–2175.PubMedCrossRefGoogle Scholar
  69. Kang, D.-C., Gao, X.-Q., Ge, Q.-F., Zhou, G.-H., & Zhang, W.-G. (2017). Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. Ultrasonics Sonochemistry, 38, 317–325.PubMedCrossRefGoogle Scholar
  70. Kiani, H., Sun, D.-W., & Zhang, Z. (2013). Effects of processing parameters on the convective heat transfer rate during ultrasound assisted low temperature immersion treatment of a stationary sphere. Journal of Food Engineering, 115(3), 384–390.CrossRefGoogle Scholar
  71. Knorr, D., Zenker, M., Heinz, V., & Lee, D.-U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5), 261–266.CrossRefGoogle Scholar
  72. Koh, L. L. A., Chandrapala, J., Zisu, B., Martin, G. J. O., Kentish, S. E., & Ashokkumar, M. (2014). A comparison of the effectiveness of sonication, high shear mixing and homogenization on improving the heat stability of whey proteins solutions. Food and Bioprocess Technology, 7(2), 556–566.CrossRefGoogle Scholar
  73. Kuijpers, M. W. A., Kemmere, M. F., & Keurentjes, J. T. F. (2002). Calorimetric study of the energy efficiency for ultrasound-induced radical formation. Ultrasonics, 40(1–8), 675–678.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lad, V. N., & Murthy, Z. V. P. (2012). Enhancing the stability of oil-in-water emulsions emulsified by coconut milk protein with the application of acoustic cavitation. Industrial & Engineering Chemistry Research, 51(11), 4222–4229.CrossRefGoogle Scholar
  75. Lawrie, R., & Ledward, D. (2006). Lawrie’s meat science (7th ed.). Cambridge, UK: Woodhead Publishing.CrossRefGoogle Scholar
  76. Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry, 15(5), 731–737.PubMedCrossRefGoogle Scholar
  77. Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., … Memish, Z. A. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2224–2260.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu, Z., Juliano, P., Williams, R. P., Niere, J., & Augustin, M. A. (2014a). Ultrasound effects on the assembly of casein micelles in reconstituted skim milk. Journal of Dairy Research, 81(2), 146–155.PubMedCrossRefGoogle Scholar
  79. Liu, Z., Juliano, P., Williams, R. P., Niere, J., & Augustin, M. A. (2014b). Ultrasound improves the renneting properties of milk. Ultrasonics Sonochemistry, 21(6), 2131–2137.PubMedCrossRefGoogle Scholar
  80. Lyng, J. G., Allen, P., & McKenna, B. M. (1997). The influence of high intensity ultrasound bath on aspects of beef tenderness. Journal of Muscle Foods, 8(3), 237–249.CrossRefGoogle Scholar
  81. Lyng, J. G., Allen, P., & McKenna, B. M. (1998). The effect on aspects of beef tenderness of pre- and post-rigor exposure to a high intensity ultrasound probe. Journal of the Science of Food and Agriculture, 78(3), 308–314.CrossRefGoogle Scholar
  82. Madadlou, A., Mousavi, M. E., Emam-djomeh, Z., Ehsani, M., & Sheehan, D. (2009). Sonodisruption of re-assembled casein micelles at different pH values. Ultrasonics Sonochemistry, 16(5), 644–648.PubMedCrossRefGoogle Scholar
  83. Mane, S., Bremner, D. H., Tziboula-Clarke, A., & Lemos, M. A. (2015). Effect of ultrasound on the extraction of total anthocyanins from Purple Majesty potato. Ultrasonics Sonochemistry, 27, 509–514.PubMedCrossRefGoogle Scholar
  84. Mapiye, C., Vahmani, P., Mlambo, V., Muchenje, V., Dzama, K., Hoffman, L. C., & Dugan, M. E. R. (2015). The trans-octadecenoic fatty acid profile of beef: Implications for global food and nutrition security. Food Research International, 76, 992–1000.CrossRefGoogle Scholar
  85. Marchesini, G., Balzan, S., Montemurro, F., Fasolato, L., Andrighetto, I., Segato, S., & Novelli, E. (2012). Effect of ultrasound alone or ultrasound coupled with CO2 on the chemical composition, cheese-making properties and sensory traits of raw milk. Innovative Food Science and Emerging Technologies, 16, 391–397.CrossRefGoogle Scholar
  86. Martini, S., Suzuki, A. H., & Hartel, R. W. (2008). Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. Journal of the American Oil Chemists’ Society, 85(7), 621–628.CrossRefGoogle Scholar
  87. Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47.CrossRefGoogle Scholar
  88. Mieszczakowska-Frąc, M., Dyki, B., & Konopacka, D. (2016). Effects of ultrasound on polyphenol retention in apples after the application of predrying treatments in liquid medium. Food and Bioprocess Technology, 9(3), 543–552.CrossRefGoogle Scholar
  89. Mortazavi, A., & Tabatabai, F. (2008). Study of ice cream freezing process after treatment with ultrasound. World Applied Sciences Journal, 4(2), 188–190.Google Scholar
  90. Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243–3259.CrossRefGoogle Scholar
  91. Nguyen, N. H. A., & Anema, S. G. (2010). Effect of ultrasonication on the properties of skim milk used in the formation of acid gels. Innovative Food Science & Emerging Technologies, 11(4), 616–622.CrossRefGoogle Scholar
  92. Nishihara, T., & Doty, P. (1958). The sonic fragmentation of collagen macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 44(5), 411–417.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nöbel, S., Protte, K., Körzendörfer, A., Hitzmann, B., & Hinrichs, J. (2016). Sonication induced particle formation in yogurt: Influence of the dry matter content on the physical properties. Journal of Food Engineering, 191, 77–87.CrossRefGoogle Scholar
  94. Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427–433.CrossRefGoogle Scholar
  95. Ojha, K. S., Perussello, C. A., García, C. Á., Kerry, J. P., Pando, D., & Tiwari, B. K. (2017). Ultrasonic-assisted incorporation of nano-encapsulated omega-3 fatty acids to enhance the fatty acid profile of pork meat. Meat Science, 132, 99–106.PubMedCrossRefGoogle Scholar
  96. Olmedilla-Alonso, B., Jiménez-Colmenero, F., & Sánchez-Muniz, F. J. (2013). Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Science, 95(4), 919–930.PubMedCrossRefGoogle Scholar
  97. Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100.PubMedCrossRefGoogle Scholar
  98. O’Sullivan, J., Murray, B., Flynn, C., & Norton, I. (2016). The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocolloids, 53, 141–154.CrossRefGoogle Scholar
  99. Ozuna, C., Puig, A., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2013). Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food Engineering, 119(1), 84–93.CrossRefGoogle Scholar
  100. Pan, Z., Qu, W., Ma, H., Atungulu, G. G., & McHugh, T. H. (2011). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 18(5), 1249–1257.PubMedCrossRefGoogle Scholar
  101. Patel, S. R., & Murthy, V. P. (2011). Waste valorisation: Recovery of lactose from partially deprotonated whey by using acetone as antisolvent. Dairy Science Technology, 91, 53–63.Google Scholar
  102. Patel, S. R., & Murthy, Z. V. P. (2009). Ultrasound assisted crystallization for the recovery of lactose in an anti-solvent acetone. Crystal Research and Technology, 44(8), 889–896.CrossRefGoogle Scholar
  103. Patrick, M., Blindt, R., & Janssen, J. (2004). The effect of ultrasonic intensity on the crystal structure of palm oil. Ultrasonics Sonochemistry, 11(3), 251–255.PubMedCrossRefGoogle Scholar
  104. Paulsson, M., & Dejmek, P. (1990). Thermal denaturation of whey proteins in mixtures with caseins studied by differential scanning calorimetry. Journal of Dairy Science, 73(3), 590–600.CrossRefGoogle Scholar
  105. Pérez-Grijalba, B., García-Zebadúa, J. C., Ruíz-Pérez, V. M., Téllez-Medina, D. I., Guzmán-Gerónimo, R. I., & Mora-Escobedo, R. (2017). Biofunctionality, colorimetric coefficients and microbiological stability of blackberry (Rubus fructicosus var. Himalaya) juice under microwave/ultrasound processing. Revista Mexicana de Ingeniería Química, 17(1), 13–28.Google Scholar
  106. Pétrier, C., Combet, E., & Mason, T. (2007). Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrasonics Sonochemistry, 14(2), 117–121.PubMedCrossRefGoogle Scholar
  107. Pohlman, F. W., Dikeman, M. E., & Kropf, D. H. (1997). Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle. Meat Science, 46(1), 89–100.PubMedCrossRefGoogle Scholar
  108. Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chemistry, 114(3), 905–911.CrossRefGoogle Scholar
  109. Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2010). A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chemistry, 119(3), 1108–1113.CrossRefGoogle Scholar
  110. Roberts, R. T. (1991). Sound for processing food. Nutrition & Food Science, 91(3), 17–18.CrossRefGoogle Scholar
  111. Roncalés, P., Ceña, P., Beltrán, J. A., & Jaime, I. (1993). Ultrasonication of lamb skeletal muscle fibres enhances postmortem proteolysis. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 196(4), 339–342.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Rosu, A.-M., Nistor, D. I., Miron, N. D., Popa, M. I., & Cojocaru, R. M. (2017). Ultrasound-assisted extraction of photosynthetic pigments from dried dill (Anethum graveolens). Food and Environment Safety Journal, 11(4), 5–9.Google Scholar
  113. Ruusunen, M., & Puolanne, E. (2005). Reducing sodium intake from meat products. Meat Science, 70(3), 531–541.PubMedCrossRefGoogle Scholar
  114. Sfakianakis, P., Topakas, E., & Tzia, C. (2015). Comparative study on high-intensity ultrasound and pressure milk homogenization: Effect on the kinetics of yogurt fermentation process. Food and Bioprocess Technology, 8(3), 548–557.CrossRefGoogle Scholar
  115. Shanmugam, A., & Ashokkumar, M. (2014). Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – Physicochemical characterization. Food Hydrocolloids, 39, 151–162.CrossRefGoogle Scholar
  116. Shanmugam, A., Chandrapala, J., & Ashokkumar, M. (2012). The effect of ultrasound on the physical and functional properties of skim milk. Innovative Food Science & Emerging Technologies, 16, 251–258.CrossRefGoogle Scholar
  117. Šic Žlabur, J., Dobričević, N., Pliestić, S., Galić, A., Bilić, D. P., & Voća, S. (2017). Antioxidant potential of fruit juice with added chokeberry powder (Aronia melanocarpa). Molecules, 22(12), 2158.PubMedCentralCrossRefGoogle Scholar
  118. Šic Žlabur, J., Voća, S., Dobričević, N., Brnčić, M., Dujmić, F., & Rimac Brnčić, S. (2015). Optimization of ultrasound assisted extraction of functional ingredients from Stevia rebaudiana bertoni leaves. International Agrophysics, 29(2), 231–237.CrossRefGoogle Scholar
  119. Šimunek, M., Režek Jambrak, A., Petrović, M., Juretić, H., Major, N., Herceg, Z., … Vukušić, T. (2013). Aroma profile and sensory properties of ultrasound-treated apple juice and nectar. Food Technology and Biotechnology, 51(1), 101–111.Google Scholar
  120. Siró, I., Vén, C., Balla, C., Jónás, G., Zeke, I., & Friedrich, L. (2009). Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. Journal of Food Engineering, 91(2), 353–362.CrossRefGoogle Scholar
  121. Smith, N. B., Cannon, J. E., Novakofski, J. E., McKeith, F. K., & O’Brien, W. D. (1991). Tenderization of semitendinosus muscle using high intensity ultrasound. In IEEE 1991 Ultrasonics Symposium (Vol. 2, pp. 1371–1374).Google Scholar
  122. Sonne, A., Busch-Stockfisch, M., Weiss, J., & Hinrichs, J. (2014). Improved mapping of in-mouth creaminess of semi-solid dairy products by combining rheology, particle size, and tribology data. LWT – Food Science and Technology, 59(1), 342–347.CrossRefGoogle Scholar
  123. Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends in Food Science & Technology, 21(7), 323–331.CrossRefGoogle Scholar
  124. Stadnik, J., Dolatowski, Z. J., & Baranowska, H. M. (2008). Effect of ultrasound treatment on water holding properties and microstructure of beef (m. semimembranosus) during ageing. LWT – Food Science and Technology, 41(10), 2151–2158.CrossRefGoogle Scholar
  125. Stagni, N., & De Bernard, B. (1968). Lysosomal enzyme activity in rat and beef skeletal muscle. Biochimica et Biophysica Acta, 170, 129–139.PubMedCrossRefGoogle Scholar
  126. Suárez-Jacobo, A., Rüfer, C. E., Gervilla, R., Guamis, B., Roig-Sagués, A. X., & Saldo, J. (2011). Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice. Food Chemistry, 127(2), 447–454.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sulaiman, A., Farid, M., & Silva, F. V. (2017). Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Science and Technology International, 23(3), 265–276.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Suzuki, A. H., Lee, J., Padilla, S. G., & Martini, S. (2010). Altering functional properties of fats using power ultrasound. Journal of Food Science, 75(4), E208–E214.PubMedCrossRefGoogle Scholar
  129. Tao, Y., García, J. F., & Sun, D.-W. (2014). Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition, 54(6), 817–835.PubMedCrossRefGoogle Scholar
  130. Tao, Y., & Sun, D.-W. (2015). Enhancement of food processes by ultrasound: A review. Critical Reviews in Food Science and Nutrition, 55(4), 570–594.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Tapasco, Z. Y., Restrepo, M. D. A., & Suarez, M. H. (2011). Efecto reologico de hidrocoloides sobre la salmuera de marinado de carne bovina. Biotecnologıa En El Sector Agropecuario y Agroindustrial, 9(2), 23–31.Google Scholar
  132. Thompson, L. H., & Doraiswamy, L. K. (1999). Sonochemistry: Science and engineering. Industrial & Engineering Chemistry Research, 38(4), 1215–1249.CrossRefGoogle Scholar
  133. Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2008). Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT – Food Science and Technology, 41(10), 1876–1883.CrossRefGoogle Scholar
  134. Tiwari, B. K., O’Donnell, C. P., & Cullen, P. J. (2009). Effect of sonication on retention of anthocyanins in blackberry juice. Journal of Food Engineering, 93(2), 166–171.CrossRefGoogle Scholar
  135. Tiwari, B. K., O’Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2008). Effect of ultrasound processing on the quality and nutritional properties of fruit juices. Stewart Postharvest Review, 4, 1–6.Google Scholar
  136. Tiwari, B. K., O’Donnell, C. P., Patras, A., & Cullen, P. J. (2008). Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. Journal of Agricultural and Food Chemistry, 56(21), 10071–10077.PubMedCrossRefGoogle Scholar
  137. Tiwari, B. K., Patras, A., Brunton, N., Cullen, P. J., & O’Donnell, C. P. (2010). Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry, 17(3), 598–604.PubMedCrossRefGoogle Scholar
  138. Tomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., & Vidović, S. (2016). Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry, 29, 502–511.PubMedCrossRefGoogle Scholar
  139. Troy, D. J., Tiwari, B. K., & Joo, S.-T. (2016). Health implications of beef intramuscular fat consumption. Korean Journal for Food Science of Animal Resources, 36(5), 577–582.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Turantaş, F., Kılıç, G. B., & Kılıç, B. (2015). Ultrasound in the meat industry: General applications and decontamination efficiency. International Journal of Food Microbiology, 198, 59–69.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Uribe, E., Delgadillo, A., Giovagnoli-Vicuña, C., Quispe-Fuentes, I., & Zura-Bravo, L. (2015). Extraction techniques for bioactive compounds and antioxidant capacity determination of Chilean papaya (Vasconcellea pubescens) fruit. Journal of Chemistry.  https://doi.org/10.1155/2015/347532CrossRefGoogle Scholar
  142. van Marle, M. E., van den Ende, D., de Kruif, C. G., & Mellema, J. (1999). Steady-shear viscosity of stirred yogurts with varying ropiness. Journal of Rheology, 43(6), 1643–1662.CrossRefGoogle Scholar
  143. Vercet, A., Oria, R., Marquina, P., Crelier, S., & Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50(21), 6165–6171.PubMedCrossRefGoogle Scholar
  144. Villamiel, M., & de Jong, P. (2000). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry, 48(2), 472–478.PubMedCrossRefGoogle Scholar
  145. Wang, Z., Xu, W., Kang, N., Shen, Q., & Zhang, D. (2016). Microstructural, protein denaturation and water holding properties of lamb under pulse vacuum brining. Meat Science, 113, 132–138.PubMedCrossRefGoogle Scholar
  146. Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 1(3), 211–218.CrossRefGoogle Scholar
  147. Xargayó, M., Lagares, J. E., Fernández, D., Borrell, D., & Juncá, G. (2004). Solution for Improving meat texture. Influence of spray injection on the organoleptic and sensory characteristics. Fleis-Chwirtschaft International, 2, 68–74.Google Scholar
  148. Yanjun, S., Jianhang, C., Shuwen, Z., Hongjuan, L., Jing, L., Lu, L., … Jiaping, L. (2014). Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. Journal of Food Engineering, 124, 11–18.CrossRefGoogle Scholar
  149. Zamanipoor, M., Dincer, T., Zisu, B., & Jayasena, V. (2013). Nucleation and growth rates of lactose as affected by ultrasound in aqueous solutions. Dairy Science and Technology, 93, 595–604.CrossRefGoogle Scholar
  150. Zayas, J. F., & Strokova, N. D. (1972). Influence of ultrasound on properties of meat proteins. In XVIII Eur. Congr. Meat Res. Workers (pp. 206–213).Google Scholar
  151. Zayatas, Y. (1971). Effect of ultrasound on animal tissues. Myasnaya-Industriya SSSR, 42(3), 33–35.Google Scholar
  152. Zinoviadou, K. G., Galanakis, C. M., Brnčić, M., Grimi, N., Boussetta, N., Mota, M. J., … Barba, F. J. (2015). Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Research International, 77(Part 4), 743–752.CrossRefGoogle Scholar
  153. Zisu, B., Bhaskaracharya, R., Kentish, S., & Ashokkumar, M. (2010). Ultrasonic processing of dairy systems in large scale reactors. Ultrasonics Sonochemistry, 17(6), 1075–1081.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Zou, Y., Hou, X., Zou, Y., & Hou, X. (2017). Sonication enhances quality and antioxidant activity of blueberry juice. Food Science and Technology, 37(4), 599–603.CrossRefGoogle Scholar
  155. Zou, Y., Jiang, A., Zou, Y., & Jiang, A. (2016). Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Science and Technology, 36(1), 111–115.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of AgricultureUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations