Advertisement

Effects of Pulsed Electric Fields on Food Constituents, Microstructure and Sensorial Attributes of Food Products

  • Shualing Yang
  • Guanchen Liu
  • Zihan Qin
  • Daniel Munk
  • Jeanette Otte
  • Lilia AhrnéEmail author
Chapter

Abstract

To assess the tangible advantages of pulsed electric fields (PEF) as alternative preservation technology, or to explore its use for improvement of functionality and healthiness of foods and ingredients or creating novel food structures, knowledge is needed regarding their impact on key food constituents such as proteins, lipids, carbohydrates, bioactive and flavor compounds, as well as on product microstructure. The successful application of the technology requires also that sensorial attributes of the PEF-treated food meet the consumer expectations and acceptance. In this chapter, studies on the impact of PEF on these key issues will be discussed, in both animal- and plant-based foods.

References

  1. Abca, E. E., & Evrendilek, G. A. (2015). Processing of red wine by pulsed electric fields with respect to quality parameters. Journal of Food Processing and Preservation, 39(6), 758–767.CrossRefGoogle Scholar
  2. Abenoza, M., Benito, M., Saldaña, G., Álvarez, I., Raso, J., & Sánchez-Gimeno, A. C. (2013). Effects of pulsed electric field on yield extraction and quality of olive oil. Food and Bioprocess Technology, 6(6), 1367–1373.CrossRefGoogle Scholar
  3. Aganovic, K., Grauwet, T., Siemer, C., Toepfl, S., Heinz, V., Hendrickx, M., & Loey, A. V. (2016). Headspace fingerprinting and sensory evaluation to discriminate between traditional and alternative pasteurization of watermelon juice. European Food Research and Technology, 242(5), 787–803.CrossRefGoogle Scholar
  4. Agcam, E., Akyıldız, A., & Akdemir Evrendilek, G. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry, 143, 354–361.PubMedCrossRefGoogle Scholar
  5. Andreou, V., Dimopoulos, G., Alexandrakis, Z., Katsaros, G., Oikonomou, D., Toepfl, S., … Taoukis, P. (2017). Shelf-life evaluation of virgin olive oil extracted from olives subjected to nonthermal pretreatments for yield increase. Innovative Food Science & Emerging Technologies, 40, 52–57.CrossRefGoogle Scholar
  6. Angersbach, A., Heinz, V., & Knorr, D. (2000). Effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Science & Emerging Technologies, 1(2), 135–149.CrossRefGoogle Scholar
  7. Angesbach, A., & Knorr, D. (1997). Anwendung elektrischer Hochspannungsimpulse als Vorbehandlungsverfahren zur Beeinflussung der Trocknungscharakteristika und Rehydratationseigenschaften von Kartoffelwürfeln. Food/Nahrung, 41(1), 194–200.CrossRefGoogle Scholar
  8. Arroyo, C., Eslami, S., Brunton, N. P., Arimi, J. M., Noci, F., & Lyng, J. G. (2015). An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of turkey breast meat. Poultry Science, 94(5), 1088–1095.PubMedCrossRefGoogle Scholar
  9. Arroyo, C., Lascorz, D., O’Dowd, L., Noci, F., Arimi, J., & Lyng, J. G. (2015). Effect of pulsed electric field treatments at various stages during conditioning on quality attributes of beef longissimus thoracis et lumborum muscle. Meat Science, 99, 52–59.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ayhan, Z., Zhang, Q. H., & Min, D. B. (2002). Effects of pulsed electric field processing and storage on the quality and stability of single-strength orange juice. Journal of Food Protection, 65(10), 1623–1627.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Azhu Valappil, Z., Fan, X., Zhang, H. Q., & Rouseff, R. L. (2009). Impact of thermal and nonthermal processing technologies on unfermented apple cider aroma volatiles. Journal of Agricultural and Food Chemistry, 57(3), 924–929.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Azhuvalappil, Z., Fan, X., Geveke, D. J., & Zhang, H. Q. (2010). Thermal and nonthermal processing of apple cider: Storage quality under equivalent process conditions. Journal of Food Quality, 33(5), 612–631.CrossRefGoogle Scholar
  13. Barsotti, L., Dumay, E., Mu, T. H., Fernandez Diaz, M. D., & Cheftel, J. C. (2001). Effects of high voltage electric pulses on protein-based food constituents and structures. Trends in Food Science & Technology, 12(3), 136–144.CrossRefGoogle Scholar
  14. Bekhit, A. E.-D. A., Suwandy, V., Carne, A., van de Ven, R., & Hopkins, D. L. (2016). Effect of repeated pulsed electric field treatment on the quality of hot-boned beef loins and topsides. Meat Science, 111, 139–146.CrossRefGoogle Scholar
  15. BeMiller, J. N. (2018). Physical modification of starch. In M. Sjöö & L. Nilsson (Eds.), Starch in food: Structure, function and applications. Woodhead Publishing, an imprint of Elsevier, Duxford.Google Scholar
  16. Bendicho, S., Espachs, A., Arántegui, J., & Martín, O. (2002). Effect of high intensity pulsed electric fields and heat treatments on vitamins of milk. Journal of Dairy Research, 69(01), 113–123.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bermúdez-Aguirre, D., Fernández, S., Esquivel, H., Dunne, P. C., & Barbosa-Cánovas, G. V. (2011). Milk processed by pulsed electric fields: Evaluation of microbial quality, physicochemical characteristics, and selected nutrients at different storage conditions. Journal of Food Science, 76(5), S289–S299.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bhat, Z. F., Morton, J. D., Mason, S. L., & Bekhit, A. E.-D. A. (2018). Current and future prospects for the use of pulsed electric field in the meat industry. Critical Reviews in Food Science and Nutrition.  https://doi.org/10.1080/10408398.2018.1425825PubMedCrossRefPubMedCentralGoogle Scholar
  19. Buckow, R., Ng, S., & Toepfl, S. (2013). Pulsed electric field processing of orange juice: A review on microbial, enzymatic, nutritional, and sensory quality and stability. Comprehensive Reviews in Food Science and Food Safety, 12(5), 455–467.CrossRefGoogle Scholar
  20. Caminiti, I. M., Noci, F., Muñoz, A., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2011). Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chemistry, 124(4), 1387–1392.CrossRefGoogle Scholar
  21. Caminiti, I. M., Palgan, I., Noci, F., Muñoz, A., Whyte, P., Cronin, D. A., … Lyng, J. G. (2011). The effect of pulsed electric fields (PEF) in combination with high intensity light pulses (HILP) on Escherichia coli inactivation and quality attributes in apple juice. Innovative Food Science & Emerging Technologies, 12(2), 118–123.CrossRefGoogle Scholar
  22. Cortés, C., Esteve, M. J., Rodrigo, D., Torregrosa, F., & Frígola, A. (2006). Changes of colour and carotenoids contents during high intensity pulsed electric field treatment in orange juices. Food and Chemical Toxicology, 44(11), 1932–1939.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1–2), 49–54.CrossRefGoogle Scholar
  24. Dalgleish, D. G. (2011). On the structural models of bovine casein micelles - review and possible improvements. Soft Matter, 7(6), 2265–2272.CrossRefGoogle Scholar
  25. Dunn, J. (1996). Pulsed light and pulsed electric field for foods and eggs. Poultry Science, 75(9), 1133–1136.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Elez-Martínez, P., & Martín-Belloso, O. (2007). Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 102(1), 201–209.CrossRefGoogle Scholar
  27. Elez-Martínez, P., Soliva-Fortuny, R. C., & Martín-Belloso, O. (2005). Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. European Food Research and Technology, 222(3–4), 321–329.Google Scholar
  28. Espina, L., Monfort, S., Álvarez, I., García-Gonzalo, D., & Pagán, R. (2014). Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultrapasteurization of liquid whole egg. International Journal of Food Microbiology, 189, 119–125.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Evrendilek, G. A. (2017). Impacts of pulsed electric field and heat treatment on quality and sensory properties and microbial inactivation of pomegranate juice. Food Science and Technology International, 23(8), 668–680.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Evrendilek, G. A., Avsar, Y. K., & Evrendilek, F. (2016). Modelling stochastic variability and uncertainty in aroma active compounds of PEF-treated peach nectar as a function of physical and sensory properties, and treatment time. Food Chemistry, 190, 634–642.PubMedCrossRefGoogle Scholar
  31. Evrendilek, G. A., Dantzer, W. R., Streaker, C. B., Ratanatriwong, P., & Zhang, Q. H. (2001). Shelf-life evaluations of liquid foods treated by pilot plant pulsed electric field system. Journal of Food Processing and Preservation, 25(4), 283–297.CrossRefGoogle Scholar
  32. Evrendilek, G. A., Jin, Z. T., Ruhlman, K. T., Qiu, X., Zhang, Q. H., & Richter, E. R. (2000). Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innovative Food Science & Emerging Technologies, 1(1), 77–86.CrossRefGoogle Scholar
  33. Evrendilek, G. A., Li, S., Dantzer, W. R., & Zhang, Q. H. (2004). Pulsed electric field processing of beer: Microbial, sensory, and quality analyses. Journal of Food Science, 69(8), M228–M232.CrossRefGoogle Scholar
  34. Evrendilek, G. A., Yeom, H. W., Jin, Z. T., & Zhang, Q. H. (2004). Safety and quality evaluation of a yogurt-based drink processed by a pilot plant PEF system. Journal of Food Process Engineering, 27(3), 197–212.CrossRefGoogle Scholar
  35. Faridnia, F., Bekhit, A. E.-D. A., Niven, B., & Oey, I. (2014). Impact of pulsed electric fields and post-mortem vacuum ageing on beef longissimus thoracis muscles. International Journal of Food Science & Technology, 49(11), 2339–2347.CrossRefGoogle Scholar
  36. Faridnia, F., Burritt, D. J., Bremer, P. J., & Oey, I. (2015). Innovative approach to determine the effect of pulsed electric fields on the microstructure of whole potato tubers: Use of cell viability, microscopic images and ionic leakage measurements. Food Research International, 77, 556–564.CrossRefGoogle Scholar
  37. Fernandez-Diaz, M. D., Barsotti, L., Dumay, E., & Cheftel, J. C. (2000). Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. Journal of Agricultural and Food Chemistry, 48(6), 2332–2339.PubMedCrossRefGoogle Scholar
  38. Fincan, M., & Dejmek, P. (2002). In situ visualization of the effect of a pulsed electric field on plant tissue. Journal of Food Engineering, 55(3), 223–230.CrossRefGoogle Scholar
  39. Fincan, M., DeVito, F., & Dejmek, P. (2004). Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 64(3), 381–388.CrossRefGoogle Scholar
  40. Floury, J., Grosset, N., Leconte, N., Pasco, M., Madec, M.-N., & Jeantet, R. (2006). Continuous raw skim milk processing by pulsed electric field at non-lethal temperature: Effect on microbial inactivation and functional properties. Le Lait, 86(1), 43–57.CrossRefGoogle Scholar
  41. Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., & O’Mahony, J. A. (2nd Eds.). (2016). Dairy chemistry and biochemistry. London: Springer International Publishing, Switzerland.Google Scholar
  42. Garcia-Amezquita, L. E., Primo-Mora, A. R., Barbosa-Cánovas, G. V., & Sepulveda, D. R. (2009). Effect of nonthermal technologies on the native size distribution of fat globules in bovine cheese-making milk. Innovative Food Science & Emerging Technologies, 10(4), 491–494.CrossRefGoogle Scholar
  43. Garde-Cerdán, T., Arias-Gil, M., Marsellés-Fontanet, A. R., Ancín-Azpilicueta, C., & Martín-Belloso, O. (2007). Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control, 18(5), 473–479.CrossRefGoogle Scholar
  44. González-Arenzana, L., López-Alfaro, I., Garde-Cerdán, T., Portu, J., López, R., & Santamaría, P. (2018). Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation. International Journal of Food Microbiology, 269, 19–26.PubMedCrossRefGoogle Scholar
  45. Guderjan, M., Elez-Martínez, P., & Knorr, D. (2007). Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innovative Food Science & Emerging Technologies, 8(1), 55–62.CrossRefGoogle Scholar
  46. Guderjan, M., Töpfl, S., Angersbach, A., & Knorr, D. (2005). Impact of pulsed electric field treatment on the recovery and quality of plant oils. Journal of Food Engineering, 67(3), 281–287.CrossRefGoogle Scholar
  47. Gudmundsson, M., & Hafsteinsson, H. (2001). Effect of electric field pulses on microstructure of muscle foods and roes. Trends in Food Science & Technology, 12(3), 122–128.CrossRefGoogle Scholar
  48. Guo, M., Jin, T. Z., Geveke, D. J., Fan, X., Sites, J. E., & Wang, L. (2014). Evaluation of microbial stability, bioactive compounds, physicochemical properties, and consumer acceptance of pomegranate juice processed in a commercial scale pulsed electric field system. Food and Bioprocess Technology, 7(7), 2112–2120.CrossRefGoogle Scholar
  49. Han, Z., Yu, Q., Zeng, X. A., Luo, D. H., Yu, S. J., Zhang, B. S., & Chen, X. D. (2012). Studies on the microstructure and thermal properties of pulsed electric fields (PEF)-treated maize starch. International Journal of Food Engineering, 8(1).  https://doi.org/10.1515/1556-3758.2375
  50. Han, Z., Zeng, X., Zhang, B., & Yu, S. (2009). Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. Journal of Food Engineering, 93(3), 318–323.CrossRefGoogle Scholar
  51. Han, Z., Zeng, X. A., Fu, N., Yu, S. J., Chen, X. D., & Kennedy, J. F. (2012). Effects of pulsed electric field treatments on some properties of tapioca starch. Carbohydrate Polymers, 89(4), 1012–1017.PubMedCrossRefGoogle Scholar
  52. Han, Z., Zeng, X. A., Yu, S. J., Zhang, B. S., & Chen, X. D. (2009). Effects of pulsed electric fields (PEF) treatment on physicochemical properties of potato starch. Innovative Food Science & Emerging Technologies, 10(4), 481–485.CrossRefGoogle Scholar
  53. Hartyáni, P., Dalmadi, I., Cserhalmi, Z., Kántor, D.-B., Tóth-Markus, M., & Sass-Kiss, Á. (2011). Physical–chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices. Innovative Food Science & Emerging Technologies, 12(3), 255–260.CrossRefGoogle Scholar
  54. Hemar, Y., Augustin, M. A., Cheng, L. J., Sanguansri, P., Swiergon, P., & Wan, J. (2011). The effect of pulsed electric field processing on particle size and viscosity of milk and milk concentrates. Milchwissenschaft, 66(2), 126–128.Google Scholar
  55. Hodgins, A. M., Mittal, G. S., & Griffiths, M. W. (2002). Pasteurization of fresh orange juice using low-energy pulsed electrical field. Journal of Food Science, 67(6), 2294–2299.CrossRefGoogle Scholar
  56. Horne, D. S. (1998). Casein interactions: Casting light on the black boxes, the structure of dairy products. International Dairy Journal, 8(3), 171–177.CrossRefGoogle Scholar
  57. Janositz, A., Noack, A. K., & Knorr, D. (2011). Pulsed electric fields and their impact on the diffusion characteristics of potato slices. LWT - Food Science and Technology, 44(9), 1939–1945.Google Scholar
  58. Jeantet, R., Baron, F., Nau, F., Roignant, M., & Brulé, G. (1999). High intensity pulsed electric fields applied to egg white: Effect on Salmonella Enteritidis inactivation and protein denaturation. Journal of Food Protection, 62(12), 1381–1386.PubMedCrossRefGoogle Scholar
  59. Jin, Z. T., Zhang, H. Q., Li, S. Q., Kim, M., Dunne, C. P., Yang, T., … Venter-Gains, J. (2009). Quality of applesauces processed by pulsed electric fields and HTST pasteurisation. International Journal of Food Science & Technology, 44(4), 829–839.CrossRefGoogle Scholar
  60. Jin, Z. T., & Zhang, Q. H. (1999). Pulsed electric field inactivation of microorganisms and preservation of quality of cranberry juice. Journal of Food Processing and Preservation, 23(6), 481–497.CrossRefGoogle Scholar
  61. Kang, I., & Singh, P. (2015). Muscle proteins. In Z. Ustunol (Ed.), Applied food protein chemistry (pp. 361–392). Chichester, UK: Wiley-Blackwell.Google Scholar
  62. Keenan, T. W., & Patton, S. (1993). The milk lipid globule membrane. In R. G. Jensen & M. P. Thompson (Eds.), Handbook of milk composition. New York, NY: Academic.Google Scholar
  63. Khan, A. A., Randhawa, M. A., Carne, A., Mohamed Ahmed, I. A., Al-Juhaimi, F. Y., Barr, D., … Bekhit, A. E.-D. A. (2018). Effect of low and high pulsed electric field processing on macro and micro minerals in beef and chicken. Innovative Food Science & Emerging Technologies, 45, 273–279.CrossRefGoogle Scholar
  64. Knorr, D., & Angersbach, A. (1998). Impact of high-intensity electric field pulses on plant membrane permeabilization. Trends in Food Science & Technology, 9(5), 185–191.CrossRefGoogle Scholar
  65. Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2001). Pulsed electric field breakage of cellular tissues: Visualisation of percolative properties. Innovative Food Science & Emerging Technologies, 2(2), 113–125.CrossRefGoogle Scholar
  66. Lebovka, N. I., Praporscic, I., & Vorobiev, E. (2004). Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. Journal of Food Engineering, 65(2), 211–217.CrossRefGoogle Scholar
  67. Lee, P. Y., Kebede, B. T., Lusk, K., Mirosa, M., & Oey, I. (2017). Investigating consumers’ perception of apple juice as affected by novel and conventional processing technologies. International Journal of Food Science & Technology, 52(12), 2564–2571.CrossRefGoogle Scholar
  68. Levine, Z. A., & Vernier, P. T. (2010). Life cycle of an electropore: Field-dependent and field-independent steps in pore creation and annihilation. The Journal of Membrane Biology, 236(1), 27–36.PubMedCrossRefGoogle Scholar
  69. Li, S.-Q., Bomser, J. A., & Zhang, Q. H. (2005). Effects of pulsed electric fields and heat treatment on stability and secondary structure of bovine immunoglobulin G. Journal of Agricultural and Food Chemistry, 53(3), 663–670.PubMedCrossRefGoogle Scholar
  70. Li, S.-Q., Zhang, Q. H., Lee, Y.-Z., & Pham, T.-V. (2003). Effects of pulsed electric fields and thermal processing on the stability of bovine immunoglobulin G (IgG) in enriched soymilk. Journal of Food Science, 68(4), 1201–1207.CrossRefGoogle Scholar
  71. Li, Y., & Chen, Z. (2006). Effect of high intensity pulsed electric field on the functional properties of protein isolated from soybean. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of. Agricultural Engineering, 22(8), 194–198.Google Scholar
  72. Li, Y., Chen, Z., & Mo, H. (2007). Effects of pulsed electric fields on physicochemical properties of soybean protein isolates. LWT - Food Science and Technology, 40(7), 1167–1175.CrossRefGoogle Scholar
  73. Liu, Y. Y., Zeng, X. A., Deng, Z., Yu, S. J., & Yamasaki, S. (2011). Effect of pulsed electric field on the secondary structure and thermal properties of soy protein isolate. European Food Research and Technology, 233(5), 841.CrossRefGoogle Scholar
  74. Liu, Z., Hemar, Y., Tan, S., Sanguansri, P., Niere, J., Buckow, R., & Augustin, M. A. (2015). Pulsed electric field treatment of reconstituted skim milks at alkaline pH or with added EDTA. Journal of Food Engineering, 144, 112–118.CrossRefGoogle Scholar
  75. Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., … Robert, B. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125(2), 355–368.CrossRefGoogle Scholar
  76. López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, J. (2008). Application of pulsed electric fields for improving the maceration process during vinification of red wine: Influence of grape variety. European Food Research and Technology, 227(4), 1099–1107.CrossRefGoogle Scholar
  77. López, N., Puértolas, E., Condón, S., Raso, J., & Alvarez, I. (2009). Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90(1), 60–66.CrossRefGoogle Scholar
  78. López, N., Puértolas, E., Condón, S., Raso, J., & Álvarez, I. (2009). Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT - Food Science and Technology, 42(10), 1674–1680.CrossRefGoogle Scholar
  79. Luengo, E., Franco, E., Ballesteros, F., Álvarez, I., & Raso, J. (2014). Winery trial on application of pulsed electric fields for improving vinification of garnacha grapes. Food and Bioprocess Technology, 7(5), 1457–1464.CrossRefGoogle Scholar
  80. Ma, Q., Hamid, N., Oey, I., Kantono, K., Faridnia, F., Yoo, M., & Farouk, M. (2016). Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innovative Food Science & Emerging Technologies, 37, 359–374.CrossRefGoogle Scholar
  81. Mañas, P., & Vercet, A. (2006). Effect of PEF on enzymes and food constituents. In Pulsed electric fields technology for the food industry (pp. 131–151). Boston, MA: Springer.CrossRefGoogle Scholar
  82. Marco-Molés, R., Rojas-Graü, M. A., Hernando, I., Pérez-Munuera, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2011). Physical and structural changes in liquid whole egg treated with high-intensity pulsed electric fields. Journal of Food Science, 76(2), C257–C264.PubMedCrossRefPubMedCentralGoogle Scholar
  83. McAuley, C. M., Singh, T. K., Haro-Maza, J. F., Williams, R., & Buckow, R. (2016). Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innovative Food Science & Emerging Technologies, 38, 365–373.CrossRefGoogle Scholar
  84. McMahon, D. J., & Oommen, B. S. (2013). Casein micelle structure, functions, and interactions. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry (Vol. 1A: Proteins: Basic aspects, 4th ed., pp. 185–209). Boston, MA: Springer.CrossRefGoogle Scholar
  85. Michalac, S., Alvarez, V., Ji, T., & Zhang, Q. H. (2003). Inactivation of selected microorganisms and properties of pulsed electric field processed milk. Journal of Food Processing and Preservation, 27(2), 137–151.CrossRefGoogle Scholar
  86. Michalski, M.-C., Michel, F., Sainmont, D., & Briard, V. (2002). Apparent ζ-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids and Surfaces B: Biointerfaces, 23(1), 23–30.CrossRefGoogle Scholar
  87. Milani, E. A., Alkhafaji, S., & Silva, F. V. M. (2015). Pulsed Electric Field continuous pasteurization of different types of beers. Food Control, 50, 223–229.CrossRefGoogle Scholar
  88. Min, S., Jin, Z. T., Min, S. K., Yeom, H., & Zhang, Q. H. (2003). Commercial-scale pulsed electric field processing of orange juice. Journal of Food Science, 68(4), 1265–1271.CrossRefGoogle Scholar
  89. Min, S., Jin, Z. T., & Zhang, Q. H. (2003). Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 51(11), 3338–3344.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Min, S., & Zhang, Q. H. (2003). Effects of commercial-scale pulsed electric field processing on flavor and color of tomato juice. Journal of Food Science, 68(5), 1600–1606.CrossRefGoogle Scholar
  91. Mine, Y. (2015). Egg proteins. In Z. Ustunol (Ed.), Applied food protein chemistry (pp. 459–490). Chichester, UK: Wiley-Blackwell.Google Scholar
  92. Mojica, L., Dia, V. P., & de Mejía, E. G. (2015). Soy proteins. In Z. Ustunol (Ed.), Applied food protein chemistry (pp. 139–191). Chichester, UK: Wiley-Blackwell.Google Scholar
  93. Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martín-Belloso, O. (2008). Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiology, 25(3), 479–491.PubMedCrossRefPubMedCentralGoogle Scholar
  94. O’Dowd, L. P., Arimi, J. M., Noci, F., Cronin, D. A., & Lyng, J. G. (2013). An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle. Meat Science, 93(2), 303–309.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Odriozola-Serrano, I., Bendicho-Porta, S., & Martín-Belloso, O. (2006). Comparative study on shelf life of whole milk processed by high-intensity pulsed electric field or heat treatment. Journal of Dairy Science, 89(3), 905–911.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Odriozola-Serrano, I., Soliva-Fortuny, R., Hernández-Jover, T., & Martín-Belloso, O. (2009). Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chemistry, 112(1), 258–266.CrossRefGoogle Scholar
  97. Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2008a). Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Science & Emerging Technologies, 9(3), 272–279.CrossRefGoogle Scholar
  98. Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2008b). Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. European Food Research and Technology, 228(2), 239.CrossRefGoogle Scholar
  99. Perez, O. E., & Pilosof, A. M. R. (2004). Pulsed electric fields effects on the molecular structure and gelation of β-lactoglobulin concentrate and egg white. Food Research International, 37(1), 102–110.CrossRefGoogle Scholar
  100. Puértolas, E., Hernández-Orte, P., Sladaña, G., Álvarez, I., & Raso, J. (2010). Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Research International, 43(3), 761–766.CrossRefGoogle Scholar
  101. Puértolas, E., & Martínez de Marañón, I. (2015). Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food Chemistry, 167, 497–502.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Puértolas, E., Saldaña, G., Álvarez, I., & Raso, J. (2010). Effect of pulsed electric field processing of red grapes on wine chromatic and phenolic characteristics during aging in oak barrels. Journal of Agricultural and Food Chemistry, 58(4), 2351–2357.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Qiu, X., Sharma, S., Tuhela, L., Jia, M., & Zhang, Q. H. (1998). An integrated pef pilot plant for continuous nonthermal pasteurization of fresh orange juice. Transactions of the ASAE, 41(4), 1069–1074.CrossRefGoogle Scholar
  104. Rechcigl, M. (1984). Food for human use. Boca Raton, FL: CRC Press.Google Scholar
  105. Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). Effect of high intensity pulsed electric fields on enzymes and vitamins in bovine raw milk. International Journal of Dairy Technology, 62(1), 1–6.CrossRefGoogle Scholar
  106. Rivas, A., Rodrigo, D., Martínez, A., Barbosa-Cánovas, G. V., & Rodrigo, M. (2006). Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. LWT - Food Science and Technology, 39(10), 1163–1170.CrossRefGoogle Scholar
  107. Salvia-Trujillo, L., Morales-de la Peña, M., Rojas-Graü, A., Welti-Chanes, J., & Martín-Belloso, O. (2017). Mineral and fatty acid profile of high intensity pulsed electric fields or thermally treated fruit juice-milk beverages stored under refrigeration. Food Control, 80, 236–243.CrossRefGoogle Scholar
  108. Sampedro, F., Rodrigo, D., Martínez, A., Barbosa-Cánovas, G. V., & Rodrigo, M. (2006). Review: Application of pulsed electric fields in egg and egg derivatives. Food Science and Technology International, 12(5), 397–405.CrossRefGoogle Scholar
  109. Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Schilling, S., Toepfl, S., Ludwig, M., Dietrich, H., Knorr, D., Neidhart, S., & Carle, R. (2008). Comparative study of juice production by pulsed electric field treatment and enzymatic maceration of apple mash. European Food Research and Technology, 226(6), 1389–1398.Google Scholar
  111. Sepúlveda-Ahumada, D. R., Ortega-Rivas, E., & Barbosa-Cánovas, G. V. (2000). Quality aspects of cheddar cheese obtained with milk pasteurized by pulsed electric fields. Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 78(2), 65–71.Google Scholar
  112. Sharma, P., Oey, I., & Everett, D. W. (2014). Effect of pulsed electric field processing on the functional properties of bovine milk. Trends in Food Science & Technology, 35(2), 87–101.CrossRefGoogle Scholar
  113. Sharma, P., Oey, I., & Everett, D. W. (2015). Interfacial properties and transmission electron microscopy revealing damage to the milk fat globule system after pulsed electric field treatment. Food Hydrocolloids, 47, 99–107.CrossRefGoogle Scholar
  114. Sharma, P., Oey, I., & Everett, D. W. (2016). Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk. Food Chemistry, 207, 34–42.PubMedCrossRefGoogle Scholar
  115. Shynkaryk, M. V., Lebovka, N. I., Lanoisellé, J.-L., Nonus, M., Bedel-Clotour, C., & Vorobiev, E. (2009). Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). Journal of Food Engineering, 92(2), 189–195.CrossRefGoogle Scholar
  116. Silve, A., Papachristou, I., Wüstner, R., Sträßner, R., Schirmer, M., Leber, K., & Frey, W. (2018). Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. Algal Research, 29, 212–222.CrossRefGoogle Scholar
  117. Soliva-Fortuny, R., Balasa, A., Knorr, D., & Martín-Belloso, O. (2009). Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends in Food Science & Technology, 20(11–12), 544–556.CrossRefGoogle Scholar
  118. Sui, Q., Roginski, H., Williams, R. P. W., Versteeg, C., & Wan, J. (2011). Effect of pulsed electric field and thermal treatment on the physicochemical and functional properties of whey protein isolate. International Dairy Journal, 21(4), 206–213.CrossRefGoogle Scholar
  119. Sulaiman, A., Farid, M., & Silva, F. V. (2017). Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Science and Technology International, 23(3), 265–276.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Suwandy, V., Carne, A., van de Ven, R., Bekhit, A. E.-D. A., & Hopkins, D. L. (2015a). Effect of pulsed electric field on the proteolysis of cold boned beef M. Longissimus lumborum and M. Semimembranosus. Meat Science, 100, 222–226.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Suwandy, V., Carne, A., van de Ven, R., Bekhit, A. E.-D. A., & Hopkins, D. L. (2015b). Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness. Meat Science, 105, 25–31.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Suwandy, V., Carne, A., van de Ven, R., Bekhit, A. E.-D. A., & Hopkins, D. L. (2015c). Effect of pulsed electric field treatment on the eating and keeping qualities of cold-boned beef loins: Impact of initial pH and fibre orientation. Food and Bioprocess Technology, 8(6), 1355–1365.CrossRefGoogle Scholar
  123. Suwandy, V., Carne, A., van de Ven, R., Bekhit, A. E.-D. A., & Hopkins, D. L. (2015d). Effect of repeated pulsed electric field treatment on the quality of cold-boned beef loins and topsides. Food and Bioprocess Technology, 8(6), 1218–1228.CrossRefGoogle Scholar
  124. Töpfl, S. (2006). Pulsed Electric Fields (PEF) for permeabilization of cell Membranes in food- and bioprocessing applications, process and equipment design and cost analysis. Berlin, Germany: Berlin University of Technology.Google Scholar
  125. Töpfl, S., & Heinz, V. (2007). Application of pulsed electric fields to improve mass transfer in dry cured meat products. Fleischwirtschaft International: Journal for Meat Production and Meat Processing, 1, 62–64.Google Scholar
  126. Torregrosa, F., Cortés, C., Esteve, M. J., & Frígola, A. (2005). Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids. Journal of Agricultural and Food Chemistry, 53(24), 9519–9525.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Turk, M. F., Billaud, C., Vorobiev, E., & Baron, A. (2012). Continuous pulsed electric field treatment of French cider apple and juice expression on the pilot scale belt press. Innovative Food Science & Emerging Technologies, 14, 61–69.CrossRefGoogle Scholar
  128. Turk, M. F., Vorobiev, E., & Baron, A. (2012). Improving apple juice expression and quality by pulsed electric field on an industrial scale. LWT - Food Science and Technology, 49(2), 245–250.CrossRefGoogle Scholar
  129. Vallverdú-Queralt, A., Oms-Oliu, G., Odriozola-Serrano, I., Lamuela-Raventos, R. M., Martín-Belloso, O., & Elez-Martínez, P. (2012). Effects of pulsed electric fields on the bioactive compound content and antioxidant capacity of tomato fruit. Journal of Agricultural and Food Chemistry, 60(12), 3126–3134.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Vicaş, S. I., Bandici, L., Teuşdea, A. C., Turcin, V., Popa, D., & Bandici, G. E. (2017). The bioactive compounds, antioxidant capacity, and color intensity in must and wines derived from grapes processed by pulsed electric field. CyTA - Journal of Food, 15(4), 553–562.CrossRefGoogle Scholar
  131. Vorobiev, E., & Lebovka, N. (2009). Pulsed-electric fields induced effects in plant tissues: Fundamental aspects and perspectives of applications. In E. Vorobiev & N. Lebovka (Eds.), Electrotechnologies for extraction from food plants and biomaterials (pp. 39–81). New York, NY: Springer.CrossRefGoogle Scholar
  132. Walkling-Ribeiro, M., Noci, F., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2009). Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food and Bioproducts Processing, 87(2), 102–107.CrossRefGoogle Scholar
  133. Walkling-Ribeiro, M., Noci, F., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2010). Shelf life and sensory attributes of a fruit smoothie-type beverage processed with moderate heat and pulsed electric fields. LWT - Food Science and Technology, 43(7), 1067–1073.CrossRefGoogle Scholar
  134. Walstra, P. (1983). Physical chemistry of milk fat globules. In P. F. Fox (Ed.), Developments in dairy chemistry - 2 (pp. 119–158). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  135. Walstra, P. (1990). On the stability of casein micelles. Journal of Dairy Science, 73(8), 1965–1979.CrossRefGoogle Scholar
  136. Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2014). Dairy science and technology. Boca Raton, FL: Taylor and Francis.Google Scholar
  137. Wiktor, A., Nowacka, M., Dadan, M., Rybak, K., Lojkowski, W., Chudoba, T., & Witrowa-Rajchert, D. (2016). The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Drying Technology, 34(11), 1286–1296.CrossRefGoogle Scholar
  138. Wu, Y., Mittal, G. S., & Griffiths, M. W. (2005). Effect of pulsed electric field on the inactivation of microorganisms in grape juices with and without antimicrobials. Biosystems Engineering, 90(1), 1–7.Google Scholar
  139. Xiang, B. Y., Ngadi, M. O., Ochoa-Martinez, L. A., & Simpson, M. V. (2011). Pulsed electric field-induced structural modification of whey protein isolate. Food and Bioprocess Technology, 4(8), 1341–1348.CrossRefGoogle Scholar
  140. Xiang, B. Y., Simpson, M. V., Ngadi, M. O., & Simpson, B. K. (2011). Flow behaviour and viscosity of reconstituted skimmed milk treated with pulsed electric field. Biosystems Engineering, 109(3), 228–234.CrossRefGoogle Scholar
  141. Xu, S., Walkling-Ribeiro, M., Griffiths, M. W., & Corredig, M. (2015). Pulsed electric field processing preserves the antiproliferative activity of the milk fat globule membrane on colon carcinoma cells. Journal of Dairy Science, 98(5), 2867–2874.PubMedCrossRefGoogle Scholar
  142. Yeom, H. W., Evrendilek, G. A., Jin, Z. T., & Zhang, Q. H. (2004). Processing of yogurt-based products with pulsed electric fields: Microbial, sensory and physical evaluations. Journal of Food Processing and Preservation, 28(3), 161–178.CrossRefGoogle Scholar
  143. Yeom, H. W., Streaker, C. B., Zhang, Q. H., & Min, D. B. (2000). Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. Journal of Agricultural and Food Chemistry, 48(10), 4597–4605.PubMedCrossRefGoogle Scholar
  144. Yin, Y., Han, Y., & Liu, J. (2007). A novel protecting method for visual green color in spinach puree treated by high intensity pulsed electric fields. Journal of Food Engineering, 79(4), 1256–1260.CrossRefGoogle Scholar
  145. Zeng, F., Gao, Q., Han, Z., Zeng, X., & Yu, S. (2016). Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chemistry, 194, 1313–1319.PubMedCrossRefGoogle Scholar
  146. Zeng, X., Han, Z., & Zi, Z. (2010). Effects of pulsed electric field treatments on quality of peanut oil. Food Control, 21(5), 611–614.CrossRefGoogle Scholar
  147. Zhang, S., Yang, R., Zhao, W., Hua, X., Zhang, W., & Zhang, Z. (2011). Influence of pulsed electric field treatments on the volatile compounds of milk in comparison with pasteurized processing. Journal of Food Science, 76(1), C127–C132.PubMedCrossRefGoogle Scholar
  148. Zhao, W., Yang, R., Tang, Y., & Lu, R. (2007). Combined effects of heat and PEF on microbial inactivation and quality of liquid egg whites. International Journal of Food Engineering, 3(4).  https://doi.org/10.2202/1556-3758.1256
  149. Zulueta, A., Esteve, M. J., Frasquet, I., & Frígola, A. (2007). Fatty acid profile changes during orange juice-milk beverage processing by high-pulsed electric field. European Journal of Lipid Science and Technology, 109(1), 25–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shualing Yang
    • 1
  • Guanchen Liu
    • 1
  • Zihan Qin
    • 1
  • Daniel Munk
    • 1
  • Jeanette Otte
    • 1
  • Lilia Ahrné
    • 1
    Email author
  1. 1.Department of Food ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations