Advertisement

Pushing the Online Matrix-Vector Conjecture Off-Line and Identifying Its Easy Cases

  • Leszek Gąsieniec
  • Jesper Jansson
  • Christos Levcopoulos
  • Andrzej LingasEmail author
  • Mia Persson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11458)

Abstract

Henzinger et al. posed the so called Online Boolean Matrix-vector Multiplication (OMv) conjecture and showed that it implies tight hardness results for several basic partially dynamic or dynamic problems [STOC’15].

We show that the OMv conjecture is implied by a simple off-line conjecture. If a not uniform (i.e., it might be different for different matrices) polynomial-time preprocessing of the matrix in the OMv conjecture is allowed then we can show such a variant of the OMv conjecture to be equivalent to our off-line conjecture. On the other hand, we show that the OMV conjecture does not hold in the restricted cases when the rows of the matrix or the input vectors are clustered.

Notes

Acknowledgements

CL, JJ and MP were supported in part by Swedish Research Council grant 621-2017-03750.

References

  1. 1.
    Andoni, A., Indyk, P.: Nearest neighbours in high-dimensional spaces. In: Goodman, J.E., O’Orourke, J., Toth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press, Boca Raton (2017)Google Scholar
  2. 2.
    Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory Comput. 8(1), 69–94 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Björklund, A., Lingas, A.: Fast Boolean matrix multiplication for highly clustered data. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 258–263. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44634-6_24CrossRefzbMATHGoogle Scholar
  4. 4.
    Chakraborty, D., Kamma, L., Larsen, K.G.: Tight cell probe bounds for succinct Boolean matrix-vector multiplication. In: Proceedings of STOC 2018, pp. 1297–1306 (2018)Google Scholar
  5. 5.
    Floderus, P., Jansson, J., Levcopoulos, C., Lingas, A., Sledneu, D.: 3D rectangulations and geometric matrix multiplication. Algorithmica 80(1), 136–154 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gąsieniec, L., Lingas, A.: An improved bound on Boolean matrix multiplication for highly clustered data. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 329–339. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45078-8_29CrossRefzbMATHGoogle Scholar
  7. 7.
    Larsen, K.G., Williams, R.R.: Faster online matrix-vector multiplication. In: Proceedings of SODA 2017, pp. 2182–2189 (2017)Google Scholar
  8. 8.
    Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of STOC 2015 (also presented at HALG 2016)Google Scholar
  9. 9.
    Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete Math. 4(3), 369–384 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In: Proceedings of SODA 2007, pp. 995–2001 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leszek Gąsieniec
    • 1
  • Jesper Jansson
    • 2
  • Christos Levcopoulos
    • 3
  • Andrzej Lingas
    • 3
    Email author
  • Mia Persson
    • 4
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Department of ComputingThe Hong Kong Polytechnic UniversityKowloonHong Kong
  3. 3.Department of Computer ScienceLund UniversityLundSweden
  4. 4.Department of Computer Science and Media TechnologyMalmö UniversityMalmöSweden

Personalised recommendations