Vertex-Critical (\(P_5\), banner)-Free Graphs

  • Qingqiong Cai
  • Shenwei Huang
  • Tao Li
  • Yongtang ShiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11458)


Given two graphs \(H_1\) and \(H_2\), a graph is \((H_1,H_2)\)-free if it contains no induced subgraph isomorphic to \(H_1\) or \(H_2\). Let \(P_t\) and \(C_t\) be the path and the cycle on t vertices, respectively. A banner is the graph obtained from a \(C_4\) by adding a new vertex and making it adjacent to exactly one vertex of the \(C_4\). For a fixed integer \(k\ge 1\), a graph G is said to be k-vertex-critical if the chromatic number of G is k and the removal of any vertex results in a graph with chromatic number less than k. The study of k-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is \((k-1)\)-colorable. In this paper, we show that there are finitely many 6-vertex-critical (\(P_5\), banner)-free graphs. This is one of the few results on the finiteness of k-vertex-critical graphs when \(k>4\). To prove our result, we use the celebrated Strong Perfect Graph Theorem and well-known properties on k-vertex-critical graphs in a creative way.



Qingqiong Cai was partially supported by National Natural Science Foundation of China (No. 11701297) and Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province (No. CICIP2018005). Shenwei Huang is partially supported by the National Natural Science Foundation of China (11801284). Tao Li is partially supported by the National Natural Science Foundation (61872200) and the National Key Research and Development Program of China (2018YFB1003405, 2016YFC0400709). Yongtang Shi was partially supported by National Natural Science Foundation of China (Nos. 11771221, 11811540390), Natural Science Foundation of Tianjin (No. 17JCQNJC00300), and the China-Slovenia bilateral project “Some topics in modern graph theory” (No. 12-6).


  1. 1.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008)CrossRefGoogle Scholar
  2. 2.
    Bruce, D., Hoàng, C.T., Sawada, J.: A certifying algorithm for 3-colorability of P\(_5\)-free graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 594–604. Springer, Heidelberg (2009). Scholar
  3. 3.
    Chudnovsky, M., Goedgebeur, J., Schaudt, O., Zhong, M.: Obstructions for three-coloring and list three-coloring H-free graphs. arXiv:1703.05684 [math.CO]
  4. 4.
    Chudnovsky, M., Goedgebeur, J., Schaudt, O., Zhong, M.: Obstructions for three-coloring graphs with one forbidden induced subgraph. In: Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1774–1783 (2016)Google Scholar
  5. 5.
    Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dhaliwal, H.S., Hamel, A.M., Hoàng, C.T., Maffray, F., McConnell, T.J.D., Panait, S.A.: On color-critical (\({P}_5\), co-\({P_5}\))-free graphs. Discrete Appl. Math. 216, 142–148 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dirac, G.A.: Note on the colouring of graphs. Mathematische Zeitschrift 54, 347–353 (1951)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dirac, G.A.: A property of 4-chromatic graphs and some remarks on critical graphs. J. Lond. Math. Soc. 27, 85–92 (1952)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fouquet, J.L.: A decomposition for a class of \(({P}_5,\overline{P_5})\)-free graphs. Discrete Math. 121, 75–83 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gallai, T.: Kritische Graphen I. Publ. Math. Inst. Hungar. Acad. Sci. 8, 165–92 (1963)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gallai, T.: Kritische Graphen II. Publ. Math. Inst. Hungar. Acad. Sci. 8, 373–395 (1963)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Goedgebeur, J., Schaudt, O.: Exhaustive generation of \(k\)-critical \(\cal{H}\)-free graphs. J. Graph Theory 87, 188–207 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hell, P., Huang, S.: Complexity of coloring graphs without paths and cycles. Discrete Appl. Math. 216, 211–232 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding \(k\)-colorability of \(P_5\)-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hoàng, C.T., Moore, B., Recoskiez, D., Sawada, J., Vatshelle, M.: Constructions of \(k\)-critical \({P_5}\)-free graphs. Discrete Appl. Math. 182, 91–98 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huang, S., Li, T., Shi, Y.: Critical (P6, banner)-free graphs. Discrete Appl. Math. (2018). Scholar
  18. 18.
    Kaminski, M., Pstrucha, A.: Certifying coloring algorithms for graphs without long induced paths. arXiv:1703.02485 [math.CO] (2017)
  19. 19.
    Kostochka, A.V., Yancey, M.: Ore’s conjecture on color-critical graphs is almost true. J. Combin. Theory Ser. B 109, 73–101 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ore, O.: The Four Color Problem. Academic Press, Cambridge (1967)zbMATHGoogle Scholar
  21. 21.
    Randerath, B., Schiermeyer, I.: \(3\)-colorability \(\in \cal{P}\) for \(P_6\)-free graphs. Discrete Appl. Math. 136, 299–313 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    West, D.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Qingqiong Cai
    • 1
  • Shenwei Huang
    • 1
  • Tao Li
    • 1
  • Yongtang Shi
    • 2
    Email author
  1. 1.College of Computer ScienceNankai UniversityTianjinChina
  2. 2.Center for Combinatorics and LPMCNankai UniversityTianjinChina

Personalised recommendations