Advertisement

Introduction

  • Ravi PatelEmail author
  • Dipankar DebEmail author
  • Rajeeb DeyEmail author
  • Valentina E. BalasEmail author
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 161)

Abstract

Rapid global industrial growth has exacerbated demand in energy supply among the increasing population. This demand is fulfilled from two main resources: (i) fossil fuels and nuclear energy [1], (ii) renewable energy sources. Energy derived from fossil fuels negatively impacts the environment by causing pollution and global warming. Such fuels may be unavailable in the near future, and so we must seek alternatives for the reduction of the dependency on non-renewable sources [2]. Renewable energy technologies have evolved over the years. These technologies interestingly are not dependent on the limited fuel sources. Energy extraction from organic or inorganic wastes efficiently resolves energy and environmental issues.

References

  1. 1.
    Akdeniz, F., Çaglar, A., Güllü, D.: Recent energy investigations on fossil and alternative nonfossil resources in Turkey. Energy Convers. Manag. 43, 575–589 (2002)CrossRefGoogle Scholar
  2. 2.
    Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., Oh, S.: Microbial fuel cell as new technology for bioelectricity generation: a review. Alex. Eng. J. 54, 745–756 (2015)CrossRefGoogle Scholar
  3. 3.
    Kirubakaran, A., Jain, S., Nema, R.: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13, 2430–2440 (2009)CrossRefGoogle Scholar
  4. 4.
    Sharaf, O., Orhan, M.: An overview of fuel cell technology: fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853 (2014)CrossRefGoogle Scholar
  5. 5.
    Hu, P., Ouyang, Y., Wu, L., Shen, L., Luo, Y., Christie, P.: Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. J. Environ. Sci. 27, 225–231 (2015)CrossRefGoogle Scholar
  6. 6.
    Mathuriya, A., Sharma, V.: Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species. J. Biochem. Technol. 1, 49–52 (2009)Google Scholar
  7. 7.
    Qin, M., Hynes, E., Abu-Reesh, I., He, Z.: Ammonium removal from synthetic wastewater promoted by current generation and water flux in an osmotic microbial fuel cell. J. Clean. Prod. 149, 856–862 (2017)CrossRefGoogle Scholar
  8. 8.
    HaoYu, E., Cheng, S., Scott, K., Logan, B.: Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sour. 171, 275–281 (2007)CrossRefGoogle Scholar
  9. 9.
    Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I.: Microbial fuel cells: From fundamentals to applications: a review. J. Power Sour. 356, 225–244 (2017)CrossRefGoogle Scholar
  10. 10.
    Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101, 1533–1543 (2010)CrossRefGoogle Scholar
  11. 11.
    Lovley, D.: The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19, 564–571 (2008)CrossRefGoogle Scholar
  12. 12.
    Lovley, D.: Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 4, 497–508 (2006)CrossRefGoogle Scholar
  13. 13.
    Logan, B., Hamelers, B., Rozendal, R., Schrãuder, U., Keller, J., Freguia, S.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)CrossRefGoogle Scholar
  14. 14.
    Dumitru, A., Scott, K.: Anode materials for microbial fuel cells. Microb. Electrochem. Fuel Cells, 117–152 (2016)Google Scholar
  15. 15.
    Yamashita, T., Yokoyama, H.: Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol. Biofuels 11(39), 1–13 (2018)Google Scholar
  16. 16.
    Mustakeem, M.: Electrode materials for microbial fuel cells: nanomaterial approach. Mater Renew. Sustain. Energy 4(22), 1–11 (2015)Google Scholar
  17. 17.
    Gezginci, M., Uysal, Y.: The Effect of different substrate sources used in microbial fuel cells on microbial community. JSM Environ. Sci. Ecol. 4(3) (2016)Google Scholar
  18. 18.
    Pandey, P., Shinde, V.N., Deopurkar, R.L., Kale, S.P., Patil, S.A., Pant, D.: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 168, 706–723 (2016)CrossRefGoogle Scholar
  19. 19.
    Rezaei, F., Richard, T.L., Brennan, R.A., Logan, B.E.: Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ. Sci. Technol. 41(11), 4053–4058 (2007)CrossRefGoogle Scholar
  20. 20.
    Chae, K.J., Choi, M.J., Lee, J.W., Kim, K.Y., Kim, I.S.: Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 100(14), 3518–3525 (2009)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y.G., Zhang, Y., She, Z., Shi, Y., Wang, M., Gao, M., Guo, L.: Effect of substrate conversion on performance of microbial fuel cells and anodic microbial communities. Environ. Eng. Sci. vpl. 34(9), 666–674 (2017)CrossRefGoogle Scholar
  22. 22.
    Wu, W., Yang, F., Liu, X., Bai, L.: Influence of substrate on electricity generation of Shewanella loihica PV-4 in microbial fuel cells. Microb. Cell Factories 13(1), 1–6 (2014)CrossRefGoogle Scholar
  23. 23.
    Mokhtarian, N., Rahimnejad, M., Najafpour, G.D., Daud, W.R.W., Ghoreyshi, A.A.: Effect of different substrate on performance of microbial fuel cell. African J. Biotechnol. 11(14), 3363–3369 (2012)CrossRefGoogle Scholar
  24. 24.
    Garba, N., Saadu, L., Balarabe, M.: An overview of the substrates used in microbial fuel cells. Greener J. BioChem. Biotechnol. 4(2), 7–26 (2017)CrossRefGoogle Scholar
  25. 25.
    Chouler, J., Bentley, I., Vaz, F., Fee, O., A, Cameron P, Di Lorenzo M.: Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochimica Acta. 79, 319–326 (2017)Google Scholar
  26. 26.
    Scott, K.: Membranes and separators for microbial fuel cells. Microb. Electrochem. Fuel Cells, 153–178 (2016)Google Scholar
  27. 27.
    Leon, J.X., Daud, W.R.W., Ghasemi, M., Liew, K.B., Ismail, M.: Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew. Sustain. Energy Rev. 28, 575–587 (2013)CrossRefGoogle Scholar
  28. 28.
    Chouler, J., Bentley, I., Vaz, F., Fee, O., A, Cameron PJ, Di Lorenzo M.: Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochimica Acta 231, 319–326 (2017)Google Scholar
  29. 29.
    Das, S., Dutta, K., Rana, D.: Polymer electrolyte membranes for microbial fuel cells: a review. Polymer Rev., 1–20 (2018)Google Scholar
  30. 30.
    Ghassemi, Z., Slaughter, G.: Biological fuel cells and membranes. Membranes 7(1), 1–12 (2017)CrossRefGoogle Scholar
  31. 31.
    Rahimnejad, M., Bakeri, G., Najafpour, G., Ghasemi, M., Oh, S.: A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res. J. 1, 7–15 (2014)CrossRefGoogle Scholar
  32. 32.
    Dharmadhikari, S., Ghosh, P., Ramachandran, M.: Synthesis of proton exchange membranes for dual-chambered microbial fuel cells. J. Serbian Chem. Soc. 83(5), 611–623 (2018)CrossRefGoogle Scholar
  33. 33.
    Zhang, X., Cheng, S., Huang, X., Logan, B.E.: Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosens. Bioelectron. 25, 1825–1828 (2010)CrossRefGoogle Scholar
  34. 34.
    Christgen, B., Scott, K., Dolfing, J., Head, I.M., Curtis, T.P.: An Evaluation of the performance and economics of membranes and separators in single chamber microbial fuel cells treating domestic wastewater. PLOS ONE 10(8) (2015)Google Scholar
  35. 35.
    Mishra, B., Awasthi, S., Rajak, R.: A review on electrical behavior of different substrates, electrodes and membranes in microbial fuel cell. World Academy Sci. Eng. Technol. Int. J. Energy Power Eng. 11(9), 1023–1027 (2017)Google Scholar
  36. 36.
    Lohar, S., Patil, V., Patil, D.: Role of mediators in microbial fuel cell for generation of electricity and waste water treatment. Int. J. Chem. Sci. Appl. 6(1), 6–11 (2015)Google Scholar
  37. 37.
    Park, D., Zeikus, J.G.: Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66(4), 1292–1297 (2000)CrossRefGoogle Scholar
  38. 38.
    Lin, C.W., Wu, C.H., Chiu, Y.H., Tsai, S.L.: Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125, 30–35 (2014)CrossRefGoogle Scholar
  39. 39.
    Sund, C.J., McMasters, S., Crittenden, S.R.: Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 76, 561–568 (2007)CrossRefGoogle Scholar
  40. 40.
    Rossi, R., Cavina, M., Setti, L.: Characterization of electron transfer mechanism in mediated microbial fuel cell by entrapped electron mediator in saccharomyces cerevisiae. Chem. Eng. Trans. 49, 559–564 (2016)Google Scholar
  41. 41.
    Adebule, A.P., Aderiye, B.I., Adebayo, A.A.: Improving bioelectricity generation of microbial fuel cell (MFC) with mediators using kitchen waste as substrate. Ann. Appl. Microbiol. Biotechnol. J. 2(1), 1–5 (2018)Google Scholar
  42. 42.
    Yifeng, Z., Liping, H., Jingwen, C., Xianliang, Q., Xiyun, C.: Electricity generation in microbial fuel cells: using humic acids as a mediator. J. Biotechnol. 136, 474–475 (2008)Google Scholar
  43. 43.
    Xu, B., Ge, Z., He, Z.: Sediment microbial fuel cells for wastewater treatment: challenges and opportunities. Environ. Sci. Water Res. Technol. 1(3), 279–284 (2015)CrossRefGoogle Scholar
  44. 44.
    Strik, D., Timmers, R., Helder, M., Steinbusch, K., Hamelers, H., Buisman, C.: Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29(1), 41–49 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of AucklandAucklandNew Zealand
  2. 2.Institute of Infrastructure Technology Research and ManagementAhmedabadIndia
  3. 3.Department of Electrical EngineeringNational Institute of TechnologySilcharIndia
  4. 4.“Aurel Vlaicu” University of AradAradRomania

Personalised recommendations