Electrogeodesics and Extremal Horizons in Kerr–Newman–(anti-)de Sitter

  • Jiří VeselýEmail author
  • Martin Žofka
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)


We review some properties of the Kerr–Newman–(anti-)de Sitter solution. We present admissible extremal configurations, but the main focus of this work is charged test particle motion in the equatorial plane and along the spacetime’s axis of rotation, with emphasis on static positions and effective potentials.


Kerr–Newman–(anti-)de Sitter Electrogeodesics Extreme horizons 

Mathematics Subject Classification (2000)

Primary 83-06; Secondary 83C10 83C15 



J.V. was supported by Charles University, project GA UK No. 80918. M.Ž. acknowledges support by GACR 17-13525S.


  1. 1.
    E. Hackmann, C. Lämmerzahl, V. Kagramanova, J. Kunz, Analytical solution of the geodesic equation in Kerr–(anti-) de Sitter space-times. Phys. Rev. D 81, 044020 (2010)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Hackmann, H. Xu, Charged particle motion in Kerr–Newmann space-times. Phys. Rev. D 87, 124030 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Griffths, J. Podolský, Exact Space-Times in Einstein’s General Relativity (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  4. 4.
    Planck Collaboration, Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209 [astro-ph.CO] (2018)Google Scholar
  5. 5.
    T.R. Lauer et al., The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes. Astrophys. J. 662, 808 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison-Wesley, Boston, 2000)zbMATHGoogle Scholar
  7. 7.
    O. Luongo, H. Quevedo, Characterizing repulsive gravity with curvature eigenvalues. Phys. Rev. D 90, 084032 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    K. Boshkayev, E. Gasperín, A.C. Gutiérrez-Piñeres, H. Quevedo, S. Toktarbay, Motion of test particles in the field of a naked singularity. Phys. Rev. D 93, 024024 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Z. Stuchlík, G. Bao, E. Østgaard, S. Hledík, Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion. Phys. Rev. D 58, 084003 (1998)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Z. Stuchlík, S. Hledík, Equatorial photon motion in the Kerr–Newman spacetimes with a non-zero cosmological constant. Class. Quant. Gravit. 17, 4541 (2000)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations