Advertisement

On Wavelet Based Enhancing Possibilities of Fuzzy Classification Methods

  • Ferenc LilikEmail author
  • Levente Solecki
  • Brigita Sziová
  • László T. Kóczy
  • Szilvia Nagy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 945)

Abstract

If the antecedents of a fuzzy classification method are derived from pictures or measured data, it might have too many dimensions to handle. A classification scheme based on such data has to apply a careful selection or processing of the measured results: either a sampling, re-sampling is necessary or the usage of functions, transformations that reduce the long, high dimensional observed data vector or matrix into a single point or to a low number of points. Wavelet analysis can be useful in such cases in two ways.

As the number of resulting points of the wavelet analysis is approximately half at each filters, a consecutive application of wavelet transform can compress the measurement data, thus reducing the dimensionality of the signal, i.e., the antecedent. An SHDSL telecommunication line evaluation is used to demonstrate this type of applicability, wavelets help in this case to overcome the problem of a one dimensional signal sampling.

In the case of using statistical functions, like mean, variance, gradient, edge density, Shannon or Rényi entropies for the extraction of the information from a picture or a measured data set, and they don not produce enough information for performing the classification well enough, one or two consecutive steps of wavelet analysis and applying the same functions for the thus resulting data can extend the number of antecedents, and can distill such parameters that were invisible for these functions in the original data set. We give two examples, two fuzzy classification schemes to show the improvement caused by wavelet analysis: a measured surface of a combustion engine cylinder and a colonoscopy picture. In the case of the first example the wear degree is to be determine, in the case of the second one, the roundish polyp content of the picture. In the first case the applied statistical functions are Rényi entropy differences, the structural entropies, in the second case mean, standard deviation, Canny filtered edge density, gradients and the entropies.

In all the examples stabilized KH rule interpolation was used to treat sparse rulebases.

The preliminary version of this paper was presented at the 3rd Conference on Information Technology, Systems Research and Computational Physics, 2–5 July 2018, Cracow, Poland [1].

Keywords

Fuzzy classification Wavelet analysis Fuzzy rule interpolation Structural entropy 

Notes

Acknowledgment

The authors would like to thank the financial support of the projects GINOP-2.3.4-15-2016-00003 and the ÚNKP-18-4 New National Excellence Programme of the Ministry of Human Capacities of Hungary. This work was supported by National Research, Development and Innovation Office (NKFIH) K124055. The authors would like to thank to EFOP-3.6.1-16-2016-00017 1 “~Internationalisation, initiatives to establish a new source of researchers and graduates, and development of knowledge and technological transfer as instruments of intelligent specialisations at Széchenyi István University” for the support of the research.

References

  1. 1.
    Lilik, F., Solecki, L., Sziová, B., Kóczy, L.T., Nagy, Sz.: On wavelet based enhancing possibilities of fuzzy classification of measurement results. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, AGH-UST Press, Cracow, p. 138 (2018)Google Scholar
  2. 2.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965).  https://doi.org/10.1016/S0019-9958(65)90241-XCrossRefzbMATHGoogle Scholar
  3. 3.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975).  https://doi.org/10.1016/S0020-7373(75)80002-2CrossRefzbMATHGoogle Scholar
  4. 4.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man and Cybern. SMC–3, 28–44 (1973).  https://doi.org/10.1109/TSMC.1973.5408575MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kóczy, L.T., Hirota, K.: Approximate reasoning by linear rule interpolation and general approximation. Int. J. Approx. Reason. 9, 197–225 (1993).  https://doi.org/10.1016/0888-613X(93)90010-BMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kóczy, L.T., Hirota, K.: Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases. Inf. Sci. 71, 169–201 (1993).  https://doi.org/10.1016/0020-0255(93)90070-3MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tikk, D., Joó, I., Kóczy, L.T., Várlaki, P., Moser, B., Gedeon, T.D.: Stability of interpolative fuzzy KH-controllers. Fuzzy Sets Syst. 125, 105–119 (2002).  https://doi.org/10.1016/S0165-0114(00)00104-4MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61. SIAM, Philadelphia (1992)Google Scholar
  9. 9.
    Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46, 1103–1127 (2000)CrossRefGoogle Scholar
  10. 10.
    Kiely, A., Klimesh, M.: The ICER Progressive Wavelet Image Compressor, IPN Progress Report 42-155, 15 November 2003. http://ipnpr.jpl.nasa.gov/tmo/progressreport/42-155/155J.pdf
  11. 11.
    Nagy, S., Pipek, J.: An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations. Phys. Chem. Chem. Phys. 17, 31558–31565 (2015)CrossRefGoogle Scholar
  12. 12.
    Fourier, J-B.J.: Theorie Analitique de la Chaleur, Firmin Didot, Paris (1822)Google Scholar
  13. 13.
    Haar, A.: Zur Theorie der orthogonalen Funktionensysteme (On the theory of orthogonal function systems, in German). Math. Ann. 69, 331–371 (1910)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423 (1948).  https://doi.org/10.1002/j.1538-7305.1948.tb01338.xMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rényi, A.: On measures of information and entropy. In: Proceedings of the fourth berkeley symposium on mathematics, statistics and probability 1960, pp. 547–561 (1961)Google Scholar
  16. 16.
    Pipek, J., Varga, I.: Universal classification scheme for the spatial localization properties of one-particle states in finite d-dimensional systems. Phys. Rev. A 46, 3148–3164 (1992). APS, Ridge NY-Washington DCCrossRefGoogle Scholar
  17. 17.
    Varga, I., Pipek, J.: Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems. Phys. Rev. E 68, 026202 (2003). APS, Ridge NY-Washington DCCrossRefGoogle Scholar
  18. 18.
    Mojzes, I., Dominkonics, Cs., Harsányi, G., Nagy, Sz., Pipek, J., Dobos, L.: Heat treatment parameters effecting the fractal dimensions of AuGe metallization on GaAs. Appl. Phys. Lett. 91(7) (2007). Article No. 073107CrossRefGoogle Scholar
  19. 19.
    Molnár, L.M., Nagy, S., Mojzes, I.: Structural Entropy in Detecting Background Patterns of AFM Images, Vacuum, vol. 84, pp. 179–183. Elsevier, Amsterdam (2010)Google Scholar
  20. 20.
    Bonyár, A., Molnár, L.M., Harsányi, G.: Localization factor: a new parameter for the quantitative characterization of surface structure with atomic force microscopy (AFM). MICRON 43, 305–310 (2012). Elsevier, AmsterdamCrossRefGoogle Scholar
  21. 21.
    Bonyár, A.: AFM characterization of the shape of surface structures with localization factor. Micron 87, 1–9 (2016)CrossRefGoogle Scholar
  22. 22.
    Lilik, F., Botzheim, J.: Fuzzy based prequalification methods for EoSHDSL technology. Acta Technica Jaurinensis 4(1), 135–144 (2011)Google Scholar
  23. 23.
    Lilik, F., Nagy, Sz., Kóczy, L.T.: Wavelet based fuzzy rule bases in pre-qualification of access networks’ wire pairs. In: IEEE Africon 2015, Addis Ababa, Ethiopia, 14–17 September 2015, Paper P-52 (2015)Google Scholar
  24. 24.
    Lilik, F., Nagy, S., Kóczy, L.T.: Improved method for predicting the performance of the physical links in telecommunications access networks. Complexity 2018, 1–14 (2018). ID 3685927CrossRefGoogle Scholar
  25. 25.
    Dreyer, M.R., Solecki, L.: Verschleissuntersuchungen an Zylinderlaufbahnen von Verbrennungsmotoren. In: 3. Symposium Produktionstechnik – Innovativ und Interdisziplinär, Zwickau, 6–7 April 2011, pp. 69–74 (2011)Google Scholar
  26. 26.
    Nagy, Sz., Solecki, L.: Wavelet analysis and structural entropy based intelligent classification method for combustion engine cylinder surfaces. In: Proceedings of the 8th European Symposium on Computational Intelligence and Mathematics, ESCIM, Sofia, 5–8 October 2016, pp. 115–120 (2016)Google Scholar
  27. 27.
    Nagy, Sz., Lilik, F., Kóczy, L.T.: Entropy based fuzzy classification and detection aid for colorectal polyps. In: IEEE Africon 2017, Cape Town, South Africa, 15–17 September 2017 (2017)Google Scholar
  28. 28.
    Silva, J.S., Histace, A., Romain, O., Dray, X., Granado, B.: Towards embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)CrossRefGoogle Scholar
  29. 29.
    Georgieva, V.M., Draganov, I.: Multistage approach for simple kidney cysts segmantation in CT images. In: Kountchev, R., Nakamatsu, K. (eds.) Intelligent Systems Reference Library, New Approaches in Intelligent Image Analysis, vol. 108, pp. 223–252. Springer Nature (2016)Google Scholar
  30. 30.
    Georgieva, V.M., Vassilev, S.G.: Kidney segmentation in ultrasound images via active contours. In: 11th International Conference on Communications, Electromagnetics and Medical Applications, Athens, Greece, 13–15 October 2016, pp. 48–53 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ferenc Lilik
    • 1
    Email author
  • Levente Solecki
    • 1
  • Brigita Sziová
    • 1
  • László T. Kóczy
    • 1
    • 2
  • Szilvia Nagy
    • 1
  1. 1.Széchenyi István UniversityGyőrHungary
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations