Advertisement

A Memetic Version of the Bacterial Evolutionary Algorithm for Discrete Optimization Problems

  • Boldizsár Tüű-SzabóEmail author
  • Péter Földesi
  • László T. Kóczy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 945)

Abstract

In this paper we present our test results with our memetic algorithm, the Discrete Bacterial Memetic Evolutionary Algorithm (DBMEA). The algorithm combines the Bacterial Evolutionary Algorithm with discrete local search techniques (2-opt and 3-opt).

The algorithm has been tested on four discrete NP-hard optimization problems so far, on the Traveling Salesman Problem, and on its three variants (the Traveling Salesman Problem with Time Windows, the Traveling Repairman Problem, and the Time Dependent Traveling Salesman Problem). The DBMEA proved to be efficient for all problems: it found optimal or close-optimal solutions. For the Traveling Repairman Problem the DBMEA outperformed even the state-of-the-art methods.

The preliminary version of this paper was presented at the 3rd Conference on Information Technology, Systems Research and Computational Physics, 2–5 July 2018, Cracow, Poland [1].

Keywords

Traveling Salesman Problem Time windows Traveling Repairman Problem Time dependent 

Notes

Acknowledgement

The authors would like to thank to EFOP-3.6.1-16-2016-00017 1 ‘Internationalisation, initiatives to establish a new source of researchers and graduates, and development of knowledge and technological transfer as instruments of intelligent specialisations at Széchenyi István University’ for the support of the research. This work was supported by National Research, Development and Innovation Office (NKFIH) K124055. Supported by the ÚNKP-18-3 New National Excellence Program of the Ministry of Human Capacities.

References

  1. 1.
    Tüű-Szabó, B., Földesi, P., Kóczy, L.T.: A Memetic version of the Bacterial Evolutionary Algorithm for discrete optimization problem. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 75. AGH-UST Press, Cracow (2018)Google Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J., Espinoza, D., Goycoolea, M., Helsgaun, K.: Certification of an optimal tour through 85,900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Botzheim, J., Toda, Y., Kubota, N.: Bacterial memetic algorithm for offline path planning of mobile robots. Memetic Comput. 4, 73–86 (2012)CrossRefGoogle Scholar
  4. 4.
    da Silva, R.F., Urrutia, S.: A General VNS heuristic for the traveling salesman problem with time windows. Discrete Optim. 7(4), 203–211 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Das, S., Chowdhury, A., Abraham, A.: A bacterial evolutionary algorithm for automatic data clustering. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 2403–2410 (2009)Google Scholar
  6. 6.
    Dányádi, Zs., Földesi, P., Kóczy, L.T.: A bacterial evolutionary solution for three dimensional bin packing problems using fuzzy fitness evaluation. Aus. J. Intell. Inf. Process. Syst. 13(1), 7 (2011). Paper 1181Google Scholar
  7. 7.
    Dányádi, Zs., Földesi, P., Kóczy, L.T.: Solution of a fuzzy resource allocation problem by various evolutionary approaches. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) 2013 Joint, pp. 807–812 (2013)Google Scholar
  8. 8.
    Farkas, M., Földesi, P., Botzheim, J., Kóczy, L.T.: Approximation of a modified traveling salesman problem using bacterial memetic algorithms. In: Towards Intelligent Engineering and Information Technology (Studies in Computational Intelligence, vol. 243), pp. 607–625. Springer, Berlin (2009)Google Scholar
  9. 9.
    Földesi, P., Botzheim, J.: Modeling of loss aversion in solving fuzzy road transport traveling salesman problem using eugenic bacterial memetic algorithm. Memetic Comput. 2(4), 259–271 (2010)CrossRefGoogle Scholar
  10. 10.
    Földesi, P., Kóczy, L.T., Botzheim, J., Farkas, M.: Eugenic bacterial memetic algorithm for fuzzy road transport traveling salesman problem. In: The 6th International Symposium on Management Engineering (ISME 2009), August 5–7, Dalian, China (2009)Google Scholar
  11. 11.
    Földesi, P., Botzheim, J., Kóczy, L.T.: Eugenic bacterial memetic algorithm for fuzzy road transport traveling salesman problem. Int. J. Innovative Comput. 7(5(B)), 2775–2798 (2011)Google Scholar
  12. 12.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  14. 14.
    Hsieh, T.-J.: Hierarchical redundancy allocation for multi-level reliability systems employing a bacterial-inspired evolutionary algorithm. Inf. Sci. 288, 174–193 (2014)CrossRefGoogle Scholar
  15. 15.
    Inoue, T., Furuhashi, T., Maeda, H., Takaba, M.: A study on interactive nurse scheduling support system using bacterial evolutionary algorithm engine. Trans. Inst. Electron. Inf. Syst. 122-C, 1803–1811 (2002)Google Scholar
  16. 16.
    Kóczy, L.T., Földesi, P., Tüű-Szabó, B.: An effective discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. Int. J. Intell. Syst. 32(8), 862–876 (2017)CrossRefGoogle Scholar
  17. 17.
    Kóczy, L.T., Földesi, P., Tüű-Szabó, B.: Enhanced discrete bacterial memetic evolutionary algorithm-an efficacious metaheuristic for the traveling salesman optimization. Inf. Sci. 460, 389–400 (2017)MathSciNetGoogle Scholar
  18. 18.
    Li, F., Golden, B., Wasil, E.: Solving the time dependent traveling salesman problem. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces Series, vol. 29. Springer, Boston (2005)Google Scholar
  19. 19.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts -Towards Memetic Algorithms, Technical Report Caltech Concurrent Computation Program, Report. 826, California Institute of Technology, Pasadena, USA (1989)Google Scholar
  20. 20.
    Nawa, N.E., Furuhashi, T.: Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans. Fuzzy Syst. 7, 608–616 (1999)CrossRefGoogle Scholar
  21. 21.
    Ohlmann, J.W., Thomas, B.W.: A compressed-annealing heuristic for the traveling salesman problem with time windows. INFORMS J. Comput. 19(1), 80–90 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Salehipour, A., Sörensen, K., Goos, P., Bräysy, O.: Efficient GRASP+VND and GRASP+VNS metaheuristics for the traveling repairman problem. 4OR Q. J. Oper. Res. 9(2), 189–209 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Schneider, J.: The time-dependent traveling salesman problem. Phys. A 314, 151–155 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Silva, M.M., Subramanian, A., Vidal, T., Ochi, L.S.: A simple and effective metaheuristic for the Minimum Latency Problem. Eur. J. Oper. Res. 221(3), 513–520 (2012)CrossRefGoogle Scholar
  25. 25.
    Tüű-Szabó, B., Földesi, P., Kóczy, L.T.: A population based metaheuristic for the Minimum Latency Problem. In: ESCIM 2017, Faro, Portugal (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Information TechnologySzéchenyi István UniversityGyőrHungary
  2. 2.Department of LogisticsSzéchenyi István UniversityGyőrHungary
  3. 3.Department of Telecommunications and Media InformaticsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations