Statistical Analysis of Models’ Reliability for Punching Resistance Assessment

  • Jana Kalická
  • Mária MinárováEmail author
  • Jaroslav Halvoník
  • Lucia Majtánová
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 945)


The paper deals with statistical analysis of engineering data set. The purpose of analysis is to stipulate suitability of formulas that compete for being involved in prepared EuroCode that will be valid from 2020. Authors dispose with a sufficient numbers of lab tests. Having input geometrical and physical parameters of each experiment at hand, the corresponding theoretical value is computed by using three formulas provided by three models. Case by case, the ratio between measured and theoretical value reveal the safety immediately: greater then one means safety, less then one means failure. This ratio stands as the one parametric dimensionless statistical variable which is analysed afterwards.

The preliminary version of this paper was presented at the 3rd Conference on Information Technology, Systems Research and Computational Physics, 2–5 July 2018, Cracow, Poland [3].


Punching reliability Kolmogorov - Smirnov test Tuckey’s fence Quartiles Coefficient of variance Data mining 



This work was supported by grants APVV-14-0013, VEGA 1/0810/16 and VEGA-1/0420/15.


  1. 1.
    EN1992-1-1 Design of Concrete Structures, Part 1-1 General Rules and Rules for Buildings, May 2004Google Scholar
  2. 2.
    Fédération Internationale du Béton (fib), Model Code 2010 - Final draft, vol. 1, Fédération Internationale du Béton, Bulletin 65, Lausanne, Switzerland, vol. 2 (2012)Google Scholar
  3. 3.
    Kalická, J., Minárová, M., Halvoník, J., Majtánová, L.: Statistical analysis of models’ reliability for punching resistance assessment. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 79. AGH-UST Press, Cracow (2018)Google Scholar
  4. 4.
    Muttoni, A., Schwartz, J.: Behaviour of beams and punching in slabs without shear reinforcement. In: IABSE Colloquium, Switzerland, Zurich, vol. 62, pp. 703–708 (1991)Google Scholar
  5. 5.
    Muttoni, A., Fernández, Ruiz M.: Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Struct. J. 105(2), 163–172 (2008)Google Scholar
  6. 6.
    Muttoni, A., Fernández Ruiz, M.: The levels-of-approximation approach in MC 2010: applications to punching shear provisions. Struct. Concr. 13(1), 32–41 (2012)CrossRefGoogle Scholar
  7. 7.
    Muttoni, A., Fernández Ruiz, M.: The critical shear crack theory for punching design: From mechanical model to closed-form design expressions. Punching shear of structural concrete slabs, Honoring Neil M. Hawkins ACI-fib International Symposium, pp. 237-252, April 2017Google Scholar
  8. 8.
    Zsutty, T.: Beam shear strength prediction by analysis of existing data. ACI J. 65(11), 943–951 (1968)Google Scholar
  9. 9.
    The Wolfram Language: Fast Introduction for Programmers.
  10. 10.
    Mendelhall, W., Sincich, T.: Statistics for the Engineering and Computer Sciences. Dellen Publishing Company, San Francisco (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jana Kalická
    • 1
  • Mária Minárová
    • 1
    Email author
  • Jaroslav Halvoník
    • 1
  • Lucia Majtánová
    • 1
  1. 1.Slovak University of TechnologyBratislavaSlovakia

Personalised recommendations