Effect of Elastic and Inelastic Scattering on Electronic Transport in Open Systems

  • Karol Kulinowski
  • Maciej Wołoszyn
  • Bartłomiej J. SpisakEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 945)


The purpose of this study is to apply the distribution function formalism to the problem of electronic transport in open systems, and numerically solve the kinetic equation with a dissipation term. This term is modeled within the relaxation time approximation, and contains two parts, corresponding to elastic or inelastic processes. The collision operator is approximated as a sum of the semiclassical energy dissipation term, and the momentum relaxation term which randomizes momentum but does not change energy. As a result, the distribution of charge carriers changes due to the dissipation processes, which has a profound impact on the electronic transport through the simulated region discussed in terms of the current–voltage characteristics and their modification caused by the scattering.


Kinetic equation Relaxation time approximation Scattering processes 



This work was partially supported by the Faculty of Physics and Applied Computer Science AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education. K.K. has been partly supported by the EU Project POWR.03.02.00-00-I004/16.

The preliminary version of this paper was presented at the 3rd Conference on Information Technology, Systems Research and Computational Physics, 2–5 July 2018, Cracow, Poland [20].


  1. 1.
    Fujita, S.: Introduction to Non-Equilibrium Quantum Statistical Mechanics. W. B. Saunders Company, Philadelphia, London (1966)zbMATHGoogle Scholar
  2. 2.
    Danielewicz, P.: Ann. Phys. (N.Y.) 152, 239 (1984). Scholar
  3. 3.
    Rammer, J.: Quantum Field Theory of Non-equilibrium States. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  4. 4.
    Schieve, W.C., Horwitz, L.P.: Quantum Statistical Mechanics. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  5. 5.
    Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  6. 6.
    Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  7. 7.
    Kohn, W., Luttinger, J.M.: Phys. Rev. 108, 590 (1957). Scholar
  8. 8.
    Luttinger, J.M., Kohn, W.: Phys. Rev. 109, 1892 (1958). Scholar
  9. 9.
    Ter Haar, D.: Rep. Prog. Phys. 24, 304 (1961). Scholar
  10. 10.
    Chruściński, D., Pascazio, S.: Open Syst. Inf. Dyn. 24, 1740001 (2017). Scholar
  11. 11.
  12. 12.
    Wigner, E.: Phys. Rev. 40, 749 (1932). Scholar
  13. 13.
    Tatarskiĭ, V.I.: Sov. Phys. Usp. 26, 311 (1983). Scholar
  14. 14.
  15. 15.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley, New York (2001)CrossRefGoogle Scholar
  16. 16.
    Caldeira, A.O., Leggett, A.J.: Phys. Rev. Lett. 46, 2114 (1981). Scholar
  17. 17.
    Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003). Scholar
  18. 18.
    Jonasson, O., Knezevic, I.: J. Comput. Electron. 14, 879 (2015). Scholar
  19. 19.
    Frensley, W.R.: Rev. Mod. Phys. 62, 745 (1990). Scholar
  20. 20.
    Kulinowski, K., Wołoszyn, M., Spisak, B.J.: In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 4. AGH-UST Press, Cracow (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Karol Kulinowski
    • 1
  • Maciej Wołoszyn
    • 1
  • Bartłomiej J. Spisak
    • 1
    Email author
  1. 1.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations