2D-Raman Correlation Spectroscopy Recognizes the Interaction at the Carbon Coating and Albumin Interface

  • Anna Kołodziej
  • Aleksandra Wesełucha-BirczyńskaEmail author
  • Paulina Moskal
  • Ewa Stodolak-Zych
  • Maria Dużyja
  • Elżbieta Długoń
  • Julia Sacharz
  • Marta Błażewicz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 945)


Carbon materials open new perspectives in biomedical research, due to their inert nature and interesting properties. For biomaterials the essential attribute is their biocompatibility, which refers to the interaction with host cells and body fluids, respectively. The aim of our work was to analyze two types of carbon layers differing primarily in topography, and modeling their interactions with blood plasma proteins. The first coating was a layer formed of pyrolytic carbon C (CVD) and the second was constructed of multi-walled carbon nanotubes obtained by electrophoretic deposition (EPD), both set on a Ti support. The results of the performed complex studies of the two types of model carbon layers exhibit significant dissimilarities regarding their interaction with chosen blood proteins, and the difference is related to the origin of a protein: whether it is animal or human. Wettability data, nano scratch tests were not sufficient to explain the material properties. In contrast, Raman microspectroscopy thoroughly decodes the phenomena occurring at the carbon structures in contact with the selected blood proteins interface. The 2D correlation method selects the most intense interaction and points out the different mechanism of interactions of proteins with the nanocarbon surfaces and differentiation due to the nature of the protein and its source: animal or human. The 2D-correlation of the Raman spectra of the MWCNT layer + HSA interphase confirms an increase in albumin β-conformation. The presented results explain the unique properties of the C-layers (CVD) in contact with human albumin.


Multi-walled carbon nanotubes Pyrolytic carbon Carbon coatings Raman microspectroscopy Plasma blood protein 



This project was financed from the National Science Centre (NCN, Poland) granted on the decision number DEC-2013/09/B/ST8/00146 and UMO-2014/13/B/ST8/01195. AK has been partly supported by the EU Project POWR.03.02.00-00-I004/16.


  1. 1.
    Kołodziej, A., Wesełucha-Birczyńska, A., Moskal, P., Stodolak-Zych, E., Dużyja, M., Długoń, E., Sacharz, J., Błażewicz, M.: 2D-Raman correlation spectroscopy recognizes the interaction at the carbon coating and albumin interface. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 3. AGH-UST Press, Cracow (2018)Google Scholar
  2. 2.
    Cademartiri, L., Ozin, G.A.: Concepts of Nanochemistry. Wiley-VCH, Weinheim (2009)Google Scholar
  3. 3.
    Sahoo, S.K., Parveen, S., Panda, J.J.: The present and future of nanotechnology in human health care. Nanomedicine 3, 20–31 (2007)Google Scholar
  4. 4.
    Lee, H., Kim, G.: Three-dimensional plotted PCL/β-TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation for bone tissue regeneration. J. Mater. Chem. 21, 6305–6312 (2011)Google Scholar
  5. 5.
    Zhang, L., Webster, T.J.: Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4, 66–80 (2009)Google Scholar
  6. 6.
    Lee, D.-E., Koo, H., Sun, I.-C., Ryu, J.H., Kim, K., Kwon, I.C.: Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012)Google Scholar
  7. 7.
    da Rocha, E.L., Porto, L.M., Rambo, C.R.: Nanotechnology meets 3D in vitro models: tissue engineered tumors and cancer therapies. Mater. Sci. Eng., C 34, 270–279 (2014)Google Scholar
  8. 8.
    Chen, A., Chatterjee, S.: Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42, 5425–5438 (2013)Google Scholar
  9. 9.
    Dash, T.K., Konkimalla, V.B.: Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 158, 15–33 (2012)Google Scholar
  10. 10.
    Parikh, R., Dalwadi, S.: Preparation and characterization of controlled release poly-ɛ-caprolactone microparticles of isoniazid for drug delivery through pulmonary route. Powder Technol. 264, 158–165 (2014)Google Scholar
  11. 11.
    Shen, Y. (ed.): Functional Polymers for Nanomedicine. RSC Publishing, Cambridge (2013)Google Scholar
  12. 12.
    Chen, L., Han, D., Jiang, L.: On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloids Surf. B 85, 2–7 (2011)Google Scholar
  13. 13.
    Ritchie, R.O.: Fatigue and fracture of pyrolytic carbon: a damage- tolerant approach to structural integrity and life prediction in “ceramic” heart valve prostheses. J. Heart Valve Dis. 5(1), 9–31 (1996)MathSciNetGoogle Scholar
  14. 14.
    Cao, H.: Mechanical performance of pyrolytic carbon in prosthetic heart valve applications. J. Heart Valve Dis. 5(1), 32–49 (1996)MathSciNetGoogle Scholar
  15. 15.
    Scholz, M.-S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., Gilbert, M.E., Muflahi, S.A., Pernice, M.F., Rae, S.I., Trevarthen, J.A., White, S.C., Weaver, P.M., Bond, I.P.: The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos. Sci. Technol. 71, 1791–1803 (2011)Google Scholar
  16. 16.
    Bareket-Keren, L., Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 1–16 (2012)Google Scholar
  17. 17.
    Hwang, J.Y., Shin, U.S., Jang, W.C., Hyun, J.K., Wall, I.B., Kim, H.W.: Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. Nanoscale 5, 487–497 (2013)Google Scholar
  18. 18.
    Silva, G.A.: Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7, 65–74 (2006)MathSciNetGoogle Scholar
  19. 19.
    Sanchez, V.C., Jachak, A., Hurt, R.H., Kane, A.B.: Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 15–34 (2012)Google Scholar
  20. 20.
    Engel, E., Michiardi, A., Navarro, M., Lacroix, D., Planell, J.A.: Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 26, 39–47 (2008)Google Scholar
  21. 21.
    Wesełucha-Birczyńska, A., Frączek-Szczypta, A., Długoń, E., Paciorek, K., Bajowska, A., Kościelna, A., Błażewicz, M.: Application of Raman spectroscopy to study of the polymer foams modified in the volume and on the surface by carbon nanotubes. Vib. Spec. 72, 50–56 (2014)Google Scholar
  22. 22.
    Wesełucha-Birczyńska, A., Swiętek, M., Sołtysiak, E., Galiński, P., Płachta, Ł., Piekara, K., Błażewicz, M.: Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst 140, 2311–2320 (2015)Google Scholar
  23. 23.
    Poncin-Epaillard, F., Vrlinic, T., Debarnot, D., Mozetic, M., Coudreuse, A., Legeay, G., El Moualij, B., Zorzi, W.: Surface treatment of polymeric materials controlling the adhesion of biomolecules. J. Funct. Biomater. 3, 528–543 (2012)Google Scholar
  24. 24.
    Fraczek-Szczypta, A., Długon, E., Wesełucha-Birczyńska, A., Nocuń, M., Błażewicz, M.: Multi walled carbon nanotubes deposited on metal substrate using EPD technique: a spectroscopic study. J. Mol. Struct. 1040, 238–245 (2013)Google Scholar
  25. 25.
    Benko, A., Przekora, A., Wesełucha-Birczyńska, A., Nocuń, M., Ginalska, G., Błażewicz, M.: Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic deposition: physicochemical and biological characterization. Appl. Phys. A 122, 1–13 (2016)Google Scholar
  26. 26.
    Wesełucha-Birczyńska, A., Stodolak-Zych, E., Turrell, S., Cios, F., Krzuś, M., Długoń, E., Benko, A., Niemiec, W., Błażewicz, M.: Vibrational spectroscopic analysis of ametal/carbon nanotube coating interface and the effect of its interaction with albumin. Vib. Spectrosc. 85, 185–195 (2016)Google Scholar
  27. 27.
    Wesełucha-Birczyńska, A., Stodolak-Zych, E., Piś, W., Długoń, E., Benko, A., Błażewicz, M.: A model of adsorption of albumin on the implant surface titanium and titanium modified carbon coatings (MWCNT-EPD): 2D correlation analysis. J. Mol. Struct. 1124, 61–70 (2016)Google Scholar
  28. 28.
    Vajtai, R. (ed.): Springer Handbook of Nanomaterials. Springer, Heidelberg (2013)Google Scholar
  29. 29.
    Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)Google Scholar
  30. 30.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)Google Scholar
  31. 31.
    Murr, L.E., Guerrero, P.A.: Carbon nanotubes in wood soot. Atmos. Sci. Lett. 7, 93–95 (2006)Google Scholar
  32. 32.
    Bang, J.J., Guerrero, P.A., Lopez, D.A., Murr, L.E., Esquivel, E.V.: Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams. J. Nanosci. Nanotechnol. 4, 716–718 (2004)Google Scholar
  33. 33.
    Sinha, N., Yeow, J.T.: Carbon nanotubes for biomedical applications. EEE Trans. Nanobiosci. 4, 180–195 (2005)Google Scholar
  34. 34.
    Zhang, S. (ed.): Biological and Biomedical Coatings Handbook: Applications. CRC Press, Boca Raton (2011)Google Scholar
  35. 35.
    Park, S., Hamad-Schifferli, K.: Nanoscale interfaces to biology. Curr. Opin. Chem. Biol. 14, 616–622 (2010)Google Scholar
  36. 36.
    Cui, H., Sinko, P.J.: The role of crystallinity on differential attachment/proliferation of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric surfaces. Front. Mater. Sci. 6, 47–59 (2012)Google Scholar
  37. 37.
    Washburn, N.R., Yamada, K.M., Simon Jr., C.G., Kennedy, S.B., Amis, E.J.: High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25, 1215–1224 (2004)Google Scholar
  38. 38.
    Anselme, K.: Osteoblast adhesion on biomaterials. Biomaterials 21, 667–681 (2000)Google Scholar
  39. 39.
    Schaller, J., Gerber, S., Kämfer, U., Lejon, S., Trachsel, C.: Human Blood Plasma Proteins. Wiley, Chichester (2008)Google Scholar
  40. 40.
    Noda, I., Ozaki, Y.: Two-dimensional Correlation Spectroscopy e Applications in Vibrational and Optical Spectroscopy. Wiley, Chichester (2004)Google Scholar
  41. 41.
    Noda, I., Dowrey, A.E., Marcott, C., Story, G.M., Ozaki, Y.: Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc. 54(7), 236A–248A (2002)Google Scholar
  42. 42.
    Noda, I.: Generalized two-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy. Appl. Spectrosc. 47, 1329–1336 (1993)Google Scholar
  43. 43.
    Shinzawa, H., Awa, K., Ozaki, Y.: Compression induced morphological and molecular structural changes of cellulose tablets probed with near infrared imaging. J. Near Infrared Spectrosc. 19, 15–22 (2011)Google Scholar
  44. 44.
    Dshige © Shigeaki Morita, Kwansei-Gakuin University (2004–2005)Google Scholar
  45. 45.
    Ferrari, A.C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. R. Soc. Lond. A 362, 2477–2512 (2004)Google Scholar
  46. 46.
    Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernández, E.: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. A Math. Phys. Eng. Sci. 362, 2065–2098 (2004)Google Scholar
  47. 47.
    Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E., Meunier, V.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)Google Scholar
  48. 48.
    Wesełucha-Birczyńska, A., Babeł, K., Jurewicz, K.: Carbonaceous materials for hydrogen storage investigated by 2D Raman correlation spectroscopy. Vib. Spectrosc. 60, 206–211 (2012)Google Scholar
  49. 49.
    Lewis, J.C., Snell, N.S., Hirschmann, D.J., Fraenkel-Conrat, H.: Amino acid composition of egg proteins. J. Biol. Chem. 186(1), 23–35 (1950)Google Scholar
  50. 50.
    Tu, A.T.: Raman Spectroscopy in Biology: Principles and Applications. Wiley, New York (1982)Google Scholar
  51. 51.
    Synytsya, A., Judexová, M., Hrubý, T., Tatarkovič, M., Miškovičová, M., Petruželka, L., Setnička, V.: Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA). Anal. Bioanal. Chem. 405, 5441–5453 (2013)Google Scholar
  52. 52.
    Anderle, G., Mendelsohn, R.: Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region. Biophys. J. 52, 69–74 (1987). Scholar
  53. 53.
    Lippert, J.L., Tyminski, D., Desmeules, P.J.: Determination of the secondary structure of proteins by laser Raman spectroscopy. J. Am. Chem. Soc. 98, 7075–7080 (1976)Google Scholar
  54. 54.
    Meloun, B., Morávek, L., Kostka, V.: Complete amino acid sequence of human serum albumin. FEBS Lett. 58, 134–137 (1975)Google Scholar
  55. 55.
    Zhong, J., Song, L., Meng, J., Gao, B., Chu, W., Xu, H., Luo, Y., Guo, J., Marcelli, A., Xie, S., Wu, Z.: Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47, 967–973 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anna Kołodziej
    • 1
  • Aleksandra Wesełucha-Birczyńska
    • 1
    Email author
  • Paulina Moskal
    • 1
  • Ewa Stodolak-Zych
    • 2
  • Maria Dużyja
    • 3
  • Elżbieta Długoń
    • 2
  • Julia Sacharz
    • 1
  • Marta Błażewicz
    • 2
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Materials Science and CeramicsAGH - University of Science and TechnologyKrakówPoland
  3. 3.TechnolutionsŁowiczPoland

Personalised recommendations