Advertisement

An Optimization Vehicle Routing Problem Approached by Bio-inspired Algorithms—A Real Case Study

  • Eliandis Matos
  • Fernando GaxiolaEmail author
  • Luis Carlos González-Gurrola
  • Alain Manzo-Martinez
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 209)

Abstract

In this study, an optimization with genetic algorithm and multi-objective genetic algorithm for vehicle transportation route is performed. The objective function used in the genetic algorithm is calculated using an equation with the sum of the values of the total distance and the number of active vehicles. For the multi-objective genetic algorithm the values are considered as separated objectives. The proposed approach is applied to the case of transportation routes of workers for the industrial plant “JABIL Circuit” in Chihuahua City (Mexico) for evaluating its efficiency. The results presented in this paper are state-of-the-art, since in comparison with the actual route planning, the number of vehicles in the original fleet is considerably reduced, and the total distance traveled by all routes also is minimized; also the quality of service for the workers is maintained (transportation time).

References

  1. 1.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59, 345–358 (1992)CrossRefGoogle Scholar
  2. 2.
    Li, L., Fu, Z.: The school bus routing problem: a case study. J. Oper. Res. Soc. 53, 552–558 (2002)CrossRefGoogle Scholar
  3. 3.
    Vaira, G.: Genetic Algorithm For Vehicle Routing Problem. Vilnius University, Technological Sciences, Informatics Engineering 1(1), 2–94 (2014)MathSciNetGoogle Scholar
  4. 4.
    Park, J., Kim, B.: The school bus routing problem: a review. Eur. J. Oper. Res. 202, 311–319 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Raghavendra, A., Krishnakumar, T.S., Muralidhar, R., Sarvanan, D.: A practical heuristic for a large scale vehicle routing problem. Eur. J. Oper. Res. 57, 32–38 (1992)CrossRefGoogle Scholar
  6. 6.
    Schittekat, P., Kinable, J., Sorense, K., Sevauz, M., Spieksma, F., Springael, J.: A metaheuristic for the school bus routing problem with bus stop selection. Eur. J. Oper. Res. 229(2), 518–528 (2013)CrossRefGoogle Scholar
  7. 7.
    Baker, B.M., Ayechew, M.A.: A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 30(5), 787–800 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zuñiga-Aguirre, E., González-Gurrola, L.C.: Un algoritmo GRASP para un problema de rutas de vehículos escolares aplicado al transporte de personal de una empresa de manufactura. Recent Advances in Theory, Methods and Practice of Operations Research (2014)Google Scholar
  9. 9.
    Veldhuizen, D.V., Lamont, G.B.: Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. J. 8, 125–148 (2000)CrossRefGoogle Scholar
  10. 10.
    Saravanan, R., Asokan, P., Sachidanandam, M.: A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations. Int. J. Mach. Tools Manuf. 42(12), 1327–1334 (2002)CrossRefGoogle Scholar
  11. 11.
    Bektaş, T., Elmastaş, S.: Solving school bus routing problems through integer programming. J. Oper. Res. Soc. 58, 1599–1604 (2007)CrossRefGoogle Scholar
  12. 12.
    Cordeau, J.F., Laporte, G., Savelsbergh, M.W.P., Daniele, V.: Vehicle routing. In: Handbook in Operation Research and Management Science, Elsevier, vol. 14, pp. 367–428 (2007)Google Scholar
  13. 13.
    Dantzig, G.G., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fisher, M.L.: Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res. 42(4), 626–642 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP Completeness. Series of Books in the Mathematical Sciences, p. 340. Macmillan, New York (1979)zbMATHGoogle Scholar
  16. 16.
    Wren, A., Carr, J.D.: Computers in Transport Planning and Operation. Ian Allan, London, UK, pp. 152 (1971)Google Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning. Addison – Wesley, New York (1989)Google Scholar
  18. 18.
    Han, S., Tabata, Y.: A hybrid genetic algorithm for the vehicle routing problem with controlling lethal gene. Asia Pac. Manag. Rev. 7(3), 405–426 (2002)Google Scholar
  19. 19.
    Lozano, J., González-Gurrola, L.C., Rodríguez, E., Lacomme, P.: A statistical comparison of evaluation functions for the vehicle routing problem with route balancing. In: 15th Mexican International Conference on Artificial Intelligence, MICAI (2016)Google Scholar
  20. 20.
    Binitha, S., Sathya, S.S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. (IJSCE) 2(2), 137–151 (2012)Google Scholar
  21. 21.
    Coello-Coello C.A., Lamont G.B., Veldhuizen D.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, p. 800. Springer, USA (2007)Google Scholar
  22. 22.
    Conak, A., Coit, D., Smith, A.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)CrossRefGoogle Scholar
  23. 23.
    Deb, K., Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 403–449. Springer, Boston, MA (2014)CrossRefGoogle Scholar
  24. 24.
    Amouzgar, K.: Multi-objective optimization using genetic algorithms. M.S. thesis, Jönköping University, School of Engineering, Jönköping, Sweden (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eliandis Matos
    • 1
  • Fernando Gaxiola
    • 1
    Email author
  • Luis Carlos González-Gurrola
    • 1
  • Alain Manzo-Martinez
    • 1
  1. 1.Autonomous University of ChihuahuaChihuahuaMexico

Personalised recommendations