Advertisement

Parallel Implementations of CHAM

  • Hwajeong Seo
  • Kyuhwang An
  • Hyeokdong Kwon
  • Taehwan Park
  • Zhi Hu
  • Howon KimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11402)

Abstract

In this paper, we presented novel parallel implementations of CHAM-64/128 block cipher on modern ARM-NEON processors. In order to accelerate the performance of the implementation of CHAM-64/128 block cipher, the full specifications of ARM-NEON processors are utilized in terms of instruction set and multiple cores. First, the SIMD feature of ARM processor is fully utilized. The modern ARM processor provides \(2\times 16\)-bit vectorized instruction. By using the instruction sets and full register files, total 4 CHAM-64/128 encryptions are performed at once in data parallel way. Second, the dedicated SIMD instruction sets, namely NEON engine, is fully exploited. The NEON engine supports \(8\times 16\)-bit vectorized instruction over 128-bit Q registers. The 24 CHAM-64/128 encryptions are performed at once in data parallel way. Third, both ARM and NEON instruction sets are well re-ordered in interleaved way. This mixed approach hides the pipeline stalls between each instruction set. Fourth, the multiple cores are exploited to maximize the performance in thread level. Finally, we achieved the 4.2 cycles/byte for implementation of CHAM-64/128 on ARM-NEON processors. This result is competitive to the parallel implementation of LEA-128/128 and HIGHT-64/128 on same processor.

Keywords

CHAM ARM-NEON processor Parallel computation Software implementation 

Notes

Acknowledgement

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1C1B5075742) and the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (2014-1-00743) supervised by the IITP (Institute for Information & communications Technology Promotion). Zhi Hu was partially supported by the Natural Science Foundation of China (Grant No. 61602526).

References

  1. 1.
    Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66787-4_16CrossRefGoogle Scholar
  2. 2.
    Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2015)Google Scholar
  3. 3.
    Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_17CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33027-8_19CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74735-2_31CrossRefGoogle Scholar
  6. 6.
    Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 1–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04852-9_1CrossRefGoogle Scholar
  7. 7.
    Holzer-Graf, S., et al.: Efficient vector implementations of AES-based designs: a case study and new implemenations for Grøstl. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 145–161. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36095-4_10CrossRefGoogle Scholar
  8. 8.
    Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05149-9_1CrossRefGoogle Scholar
  9. 9.
    Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006).  https://doi.org/10.1007/11894063_4CrossRefGoogle Scholar
  10. 10.
    Koo, B., Roh, D., Kim, H., Jung, Y., Lee, D.-G., Kwon, D.: CHAM: a family of lightweight block ciphers for resource-constrained devices. In: International Conference on Information Security and Cryptology, ICISC 2017 (2017)Google Scholar
  11. 11.
    Liu, Z., Azarderakhsh, R., Kim, H., Seo, H.: Efficient software implementation of ring-LWE encryption on IoT processors. IEEE Trans. Comput. (2017)Google Scholar
  12. 12.
    Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13858-4_5CrossRefGoogle Scholar
  13. 13.
    Park, T., Seo, H., Lee, G., Khandaker, M.A.-A., Nogami, Y., Kim, H.: Parallel implementations of SIMON and SPECK, revisited. In: Kang, B.B.H., Kim, T. (eds.) WISA 2017. LNCS, vol. 10763, pp. 283–294. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93563-8_24CrossRefGoogle Scholar
  14. 14.
    Park, T., Seo, H., Kim, H.: Parallel implementations of SIMON and SPECK. In: 2016 International Conference on Platform Technology and Service (PlatCon), pp. 1–6. IEEE (2016)Google Scholar
  15. 15.
    Seo, H., Jeong, I., Lee, J., Kim, W.-H.: Compact implementations of ARX-based block ciphers on IoT processors. ACM Trans. Embed. Comput. Syst. (TECS) 17(3), 60 (2018)Google Scholar
  16. 16.
    Seo, H., Kim, H.: Low-power encryption algorithm block cipher in JavaScript. J. Inform. Commun. Converg. Eng. 12(4), 252–256 (2014)Google Scholar
  17. 17.
    Seo, H., Liu, Z., Großschädl, J., Choi, J., Kim, H.: Montgomery modular multiplication on ARM-NEON revisited. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 328–342. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15943-0_20CrossRefGoogle Scholar
  18. 18.
    Seo, H., Liu, Z., Großschädl, J., Kim, H.: Efficient arithmetic on ARM-NEON and its application for high-speed RSA implementation. Secur. Commun. Netw. 9(18), 5401–5411 (2016)CrossRefGoogle Scholar
  19. 19.
    Seo, H., et al.: Faster ECC over \(\mathbb{F}_{2^{521}-1}\) (feat. NEON). In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 169–181. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30840-1_11CrossRefGoogle Scholar
  20. 20.
    Seo, H., et al.: Parallel implementations of LEA. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 256–274. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12160-4_16CrossRefGoogle Scholar
  21. 21.
    Seo, H., et al.: Parallel implementations of LEA, revisited. In: Choi, D., Guilley, S. (eds.) WISA 2016. LNCS, vol. 10144, pp. 318–330. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56549-1_27CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hwajeong Seo
    • 1
  • Kyuhwang An
    • 1
  • Hyeokdong Kwon
    • 1
  • Taehwan Park
    • 2
  • Zhi Hu
    • 3
  • Howon Kim
    • 2
    Email author
  1. 1.Hansung UniversitySeoulRepublic of Korea
  2. 2.Pusan National UniversityBusanRepublic of Korea
  3. 3.Central South UniversityChangshaChina

Personalised recommendations