Advertisement

Efficient Ate-Based Pairing over the Attractive Classes of BN Curves

  • Yuki NanjoEmail author
  • Md. Al-Amin Khandaker
  • Masaaki Shirase
  • Takuya Kusaka
  • Yasuyuki Nogami
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11402)

Abstract

This paper proposes two attractive classes of Barreto-Naehrig curve for ate-based pairing by imposing certain condition Open image in new window on the integer \(\chi \) that parameterizes the curve settings. The restriction results in an unparalleled way to determine a BN curve, its twisted curve coefficients, and obvious generator points. The proposed \(\chi \equiv 11~(\bmod ~12)\) are found to be more efficient than \(\chi \equiv 7~(\bmod ~12)\) together with pseudo 8-sparse multiplication in Miller’s algorithm. The authors also provide comparative implementations for the proposal.

Keywords

Pairing Tower of extension field Barreto-Naehrig curve 

Notes

Acknowledgement

This work was supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE) of Ministry of Internal Affairs and Communications, Japan.

References

  1. 1.
    Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_5CrossRefGoogle Scholar
  2. 2.
    Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. J. Cryptol. 14(3), 153–176 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryptol. 2018, 1–39 (2018).  https://doi.org/10.1007/s00145-018-9280-5CrossRefGoogle Scholar
  4. 4.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006).  https://doi.org/10.1007/11693383_22CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_4CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_30CrossRefGoogle Scholar
  7. 7.
    Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  8. 8.
    Costello, C., Lauter, K., Naehrig, M.: Attractive subfamilies of BLS curves for implementing high-security pairings. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 320–342. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25578-6_23CrossRefGoogle Scholar
  9. 9.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–280 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fuentes-Castañeda, L., Knapp, E., Rodríguez-Henríquez, F.: Faster hashing to \({\mathbb{G}}_2\). In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28496-0_25CrossRefGoogle Scholar
  11. 11.
    Granlund, T.: The GMP development team: GNU MP: the GNU multiple precision arithmetic library, 6.1. 0 edn. (2015)Google Scholar
  12. 12.
    Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient implementation of bilinear pairings on ARM processors. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 149–165. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35999-6_11CrossRefGoogle Scholar
  13. 13.
    Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mori, Y., Akagi, S., Nogami, Y., Shirase, M.: Pseudo 8-sparse multiplication for efficient ate-based pairing on Barreto-Naehrig curve. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 186–198. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04873-4_11CrossRefzbMATHGoogle Scholar
  15. 15.
    Nogami, Y., Akane, M., Sakemi, Y., Katou, H., Morikawa, Y.: Integer variable chi-based ate pairing. Pairing 5209, 178–191 (2008)zbMATHGoogle Scholar
  16. 16.
    Shirase, M.: Barreto-Naehrig curve with fixed coefficient - efficiently constructing pairing-friendly curves (2010)Google Scholar
  17. 17.
    Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  2. 2.Future University HakodateHakodateJapan

Personalised recommendations