A Construction of a Keyword Search to Allow Partial Matching with a Block Cipher

  • Yuta KoderaEmail author
  • Minoru Kuribayashi
  • Takuya Kusaka
  • Yasuyuki Nogami
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11402)


This paper considers a new construction of a keyword search including partial matching on an encrypted document. Typically, an index-based searchable symmetric encryption has been investigated. However, it makes a partial keyword matching difficult without a designated trapdoor. Thus, our objective is to propose a keyword search scheme which enables us to search a part of a keyword only by building trapdoors of each original keyword. The main idea is to insulate each character of a keyword into a bitstream of the sequence generated by a pseudorandom number generator. It achieves a partial search by giving a restriction on the length of a keyword.


Searchable symmetric encryption Partial keyword matching Block cipher NTU sequence 



This work was partly supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (A) 16H01723.


  1. 1.
    Song, D., Wager, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceeding 2000 IEEE Symposium on Security and Privacy, S & P 2000 (2000).
  2. 2.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)CrossRefGoogle Scholar
  3. 3.
    Wang, G., Liu, C., Dong, Y., Han, P., Pan, H., Fang, B.: IDCrypt: a multi-user searchable symmetric encryption scheme for cloud applications. IEEE Access 6, 2908–2921 (2018). Scholar
  4. 4.
    Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with minimal leakage and efficient updates on commodity hardware. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 241–259. Springer, Cham (2016). Scholar
  5. 5.
    Poh, G.S., Chin, J., Yau, W., Choo, K.R., Mohamad, M.S.: Searchable symmetric encryption: designs and challenges. ACM Comput. Surv. 50(3), 1–37 (2017). Article 40CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). Scholar
  7. 7.
    Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer, Heidelberg (2008). Scholar
  8. 8.
    Massey, J.L., Serconek, S.: Linear complexity of periodic sequences: a general theory. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 358–371. Springer, Heidelberg (1996). Scholar
  9. 9.
    Nogami, Y., Uehara, S., Tsuchiya, K., Begum, N., Ino, H., Morelos-Zaragoza, R.H.: A multi-value sequence generated by power residue symbol and trace function over odd characteristic field. IEICE Trans. E99–A(12), 2226–2237 (2016)CrossRefGoogle Scholar
  10. 10.
    Tsuchiya, K., Ogawa, C., Nogami, Y., Uehara, S.: Linear compleixty of generalized NTU sequences. In: IWSDA 2017 (2017).
  11. 11.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002). Scholar
  12. 12.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom Bits. SIAM J. Comput. 13, 850–864 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Divyanjali, Ankur, Pareek, V.: An overview of cryptographically secure pseudorandom number generators and BBS. IJCA, 19–28 (2014). In: ICACEAGoogle Scholar
  14. 14.
    Poonam, J., Brahmjit, S.: A survey on RC4 stream cipher. IJCNIS 7, 37–45 (2015)Google Scholar
  15. 15.
    AlFardan, N., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.: On the security of RC4 in TLS. In: USENIX Security 13, pp. 305–320 (2013). ISBN: 978-1-931971-03-4Google Scholar
  16. 16.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudorandom number generator. SIAM J. Comput. 15, 364–383 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rukhin, A.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications NIST, SP 800–22, Revision 1a (2010)Google Scholar
  18. 18.
    Kodera, Y., Miyazaki, T., Kusaka, T., Arshad, A.M., Nogami, Y., Uehara, S.: Uniform binary sequence generated over odd characteristic field. IJIEE 8(1), 5–9 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations