Structure of the Hydrogenosome

  • Marlene Benchimol
  • Wanderley de Souza
Part of the Microbiology Monographs book series (MICROMONO, volume 9)


Hydrogenosomes are very interesting organelles found in non-mitochondrial organisms. They display similarities and differences with mitochondria. Hydrogenosomes are spherical or slightly elongated organelles, although very elongated hydrogenosomes are also found. They measure between 200 and 1000 nm but under stress conditions can reach 2 μm. Hydrogenosomes divide in three different ways, like mitochondria: segmentation, partition, and the heart form. They may divide at any phase of the cell cycle. Nucleoid or electron-dense deposits are not considered part of the normal structure of the hydrogenosomes. Hydrogenosomes are surrounded by two closely apposed membranes and present a granular matrix. Hydrogenosomes have one or multiple peripheral vesicles, which incorporate calcium. The peripheral vesicle can be isolated from the hydrogenosomal matrix and is considered a distinct hydrogenosomal compartment. Dysfunctional hydrogenosomes are removed by an autophagic process and further digested in lysosomes. Similarities and differences with mitochondria are presented.



This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), PRONEX (Programa de Núcleo de Excelência), and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro).


  1. Alderete JF, Millsap KW, Lehker MW, Benchimol M (2001) Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell Microbiol 3:359–370CrossRefGoogle Scholar
  2. Barbera MJ, Ruiz-Trillo I, Tufts JYA, Bery A, Slberman JD, Roger AJ (2010) Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell 9:1913–1924CrossRefGoogle Scholar
  3. Benchimol M (1999) Hydrogenosome autophagy in Tritrichomonas foetus: an ultrastructural and cytochemical study. Biol Cell 91:165–174CrossRefGoogle Scholar
  4. Benchimol M (2000) Ultrastructural Characterization of the isolated hydrogenosome in Tritrichomonas foetus. Tissue Cell 32:1–9CrossRefGoogle Scholar
  5. Benchimol M (2001) Hydrogenosome morphological variation induced by fibronectin and other drugs in Tritrichomonas foetus and Trichomonas vaginalis. Parasitol Res 87:215–222CrossRefGoogle Scholar
  6. Benchimol M, Bernardino MV (2002) Ultrastructural localization of glycoconjugates in Tritrichomonas foetus. Parasitol Res 88:134–143CrossRefGoogle Scholar
  7. Benchimol M, De Souza W (1983) Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. J Protozool 30:422–425CrossRefGoogle Scholar
  8. Benchimol M, Engelke F (2003) Hydrogenosome behavior during the cell cycle in Tritrichomonas foetus. Biol Cell 95:283–293CrossRefGoogle Scholar
  9. Benchimol M, Elias CA, De Souza W (1982a) Tritrichomonas foetus: ultrastructural localization of basic proteins and carbohydrates. Exp Parasitol 54:135–144CrossRefGoogle Scholar
  10. Benchimol M, Elias CA, De Souza W (1982b) Ultrastructural localization of calcium in the plasma membrane and in the hydrogenosome of Tritrichomonas foetus. Exp Parasitol 54:277–284CrossRefGoogle Scholar
  11. Benchimol M, Almeida JCA, De Souza W (1996a) Further studies on the organization of the hydrogenosome in Tritrichomonas foetus. Tissue Cell 28:287–299CrossRefGoogle Scholar
  12. Benchimol M, Johnson PJ, De Souza W (1996b) Morphogenesis of the hydrogenosome: an ultrastructural study. Biol Cell 87:197–205CrossRefGoogle Scholar
  13. Benchimol M, Durand R, Almeida J (1997) A double membrane surrounds the hydrogenosomes of the anaerobic fungus Neocallimastix frontalis. FEMS Microbiol 154:277–282CrossRefGoogle Scholar
  14. Benchimol M, Diniz JAP, Ribeiro K (2000) The fine structure of the axostyle and its associations with organelles in trichomonads. Tissue Cell 32:178–187CrossRefGoogle Scholar
  15. Biagini GA, Hayes AJ, Suller MTE, Winters C, Finlay BJ, Lloyd D (1997) Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143:1623–1629CrossRefGoogle Scholar
  16. Bowman BH, Taylor JW, Brownlec AG, Lee J, Lu SD, White TJ (1992) Molecular evolution of the fungi relationships of the Basidiomycetes, Ascomycetes and Chytridiomycetes. Mol Biol Evol 9:285–296PubMedGoogle Scholar
  17. De Graaf RM, Duarte I, van Alen TA, Kuiper JW, Schotanus K, Rosenberg J, Huynen MA, Hackstein JH (2009) The hydrogenosome of Psalteriomonas lantern. BMC Evol Biol 9:287. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Díaz JAM, De Souza W (1997) Purification and biochemical characterization of the hydrogenosomes of the flagellate protist Tritrichomonas foetus. Eur J Cell Biol 74:85–91PubMedGoogle Scholar
  19. Diniz JA, Benchimol M (1998) Monocercomonas sp. cytochemistry and fine structure of freeze-fractured membranes. J Eukaryot Microbiol 45:314–322CrossRefGoogle Scholar
  20. Embley TM, Horner DA, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 12:437–441CrossRefGoogle Scholar
  21. Embley TM, van der Gienzen M, Horner DA, Hirt RP, Dyal PL, Bell S, Foster PG (2003a) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395CrossRefGoogle Scholar
  22. Embley TM, van der Gienzen M, Horner DA, Hirt RP, Dyal PL, Bell S, Foster PG (2003b) Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci 358:191–201CrossRefGoogle Scholar
  23. Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, OxfordGoogle Scholar
  24. Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microb Lett 65:311–314CrossRefGoogle Scholar
  25. Franke WW, Kartenbeck J (1971) Outer mitochondrial membrane continuous with endoplasmic reticulum. Protoplasma 73:35–41CrossRefGoogle Scholar
  26. Frederick SE, Newcomb EH, Vigil EL, Wergin WP (1968) Fine-structural characterization of plant microbodies. Planta (Berl.) 81:229–252CrossRefGoogle Scholar
  27. Garg S, Stölting J, Zimorski V, Rada P, Tachezy J, Martin WF, Gould SB (2015) Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol 7:2716–2726CrossRefGoogle Scholar
  28. Honigberg MB, Brugerolle G (1990) Structure. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, New York, pp 5–35CrossRefGoogle Scholar
  29. Horner DS, Foster PG, Embley TM (2000) Iron hydrogenase and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709CrossRefGoogle Scholar
  30. Jerstrom-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Anderson JO, Svard SG (2013) Hydrogenases in the diplomonad Spironucleus salmonicida. Nat Commun 4:2493CrossRefGoogle Scholar
  31. Jungalwala FB, Dawson RMC (1970) Phospholipid synthesis and exchange in isolated liver cells. Biochem J 117:481–490CrossRefGoogle Scholar
  32. Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086CrossRefGoogle Scholar
  33. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JR, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481CrossRefGoogle Scholar
  34. Kulda J, Nohýnková E, Ludvik J (1987) Basic structure and function of the trichomonad cell. Acta Univ Carol 30:181–198Google Scholar
  35. Leger MM, Eme L, Hug LA, Roger AJ (2016) Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol 33:2318–2336CrossRefGoogle Scholar
  36. Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728Google Scholar
  37. Madeiro RF, Benchimol M (2004) The effect of drugs in Tritrichomonas foetus. Parasitol Res 92:159–170CrossRefGoogle Scholar
  38. Makiuchi T, Nozaki T (2014) Highly divergent mitochondrion-related organelles in anaerobic protozoa. Biochimie 100:3–17CrossRefGoogle Scholar
  39. Mariante RM, Guimarães CA, Linden R, Benchimol M (2003) Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochem Cell Biol 120:129–141CrossRefGoogle Scholar
  40. Marvin-Sikkema FD, Lahpor GA, Kraak MN, Gottschal JC, Prins R (1992) Characterization of an anaerobic fungus from llama faeces. J Gen Microbiol 138:2235–2241CrossRefGoogle Scholar
  41. Morada M, Smid O, Hampl V, Sutak R, Lam B, Rappelli P, Dessi D, Fiori PL, Tachezy J, Yarlett N (2011) Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis. Mol Biochem Parasitol 176:51–54CrossRefGoogle Scholar
  42. Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889CrossRefGoogle Scholar
  43. Nyvltova E, Stairs CW, Hrdy I, Ridl J, Mach J, Paces J, Roger AJ, Tachezy J (2015) Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol 32:1039–1055CrossRefGoogle Scholar
  44. Page FC, Blanton RL (1985) The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schyzopyrenida and the Acrasidae (Acraosida). Protistologica 21:121–132Google Scholar
  45. Queiroz RC, Santos LM, Benchimol M (1991) Cytochemical localization of enzyme markers in Tritrichomonas foetus. Parasitol Res 77:561–566CrossRefGoogle Scholar
  46. Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, Smíšková K, Novotný M, Beltrán NC, Hrdý I, Lithgow T, Tachezy J (2011) The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6(9)CrossRefGoogle Scholar
  47. Rada P, Makki AR, Zimorski V, Garg S, Hampl V, Herdy I, Gould SB, Tachezi J (2015) N-terminal pre-sequence-independent import of phosphofructokinase into hydrogenosomes of Trichomnas vaginalis. Eukaryot Cell 14:1264–1275CrossRefGoogle Scholar
  48. Ribeiro KC, Monteiro-Leal LH, Benchimol M (2000) Contributions of the axostyle and flagella on the division process of Tritrichomonas foetus. J Eukaryot Microbiol 47:481–492CrossRefGoogle Scholar
  49. Ribeiro KC, Vetö Arnholdt AC, Benchimol M (2002) Tritrichomonas foetus: induced synchrony by hydroxyurea. Parasitol Res 88:627–631CrossRefGoogle Scholar
  50. Rosa IA, Einicker-Lamas M, Bernardo RR, Previatto LM, Mohana-Borges R, Díaz JAM, Benchimol M (2006) Cardiolipin in hydrogenosomes: evidence of symbiotic origin. Eukaryot Cell 5:784–787CrossRefGoogle Scholar
  51. Snyers S, Hellings P, Bovy-Kesler C, Thines-Sempoux D (1982) Occurrence of hydrogenosomes in the rumen ciliates Ophryoscolecidae. FEBS Lett 137:35–39CrossRefGoogle Scholar
  52. Stairs CW, Leger MM, Roger A (2015) Diversity and origins of anaerobic metabolism in the mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 370(1678):201400326CrossRefGoogle Scholar
  53. Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S, Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63:280–288PubMedGoogle Scholar
  54. Tandler B, Hoppel L (1973) Division of giant mitochondria during recovery from cuprizone intoxication. J Cell Biol 56:266–272CrossRefGoogle Scholar
  55. van Bruggen JJA, Zwart KD, van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicium, an endosymbiont of the anaerobic ciliate Metopus striatus Mc. Murrich Arch Microbiol 139:1–7CrossRefGoogle Scholar
  56. van der Bliek AM (2000) A mitochondrial division apparatus take place. J Cell Biol 151(2):F1–F4CrossRefGoogle Scholar
  57. van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett. 408:147–150CrossRefGoogle Scholar
  58. Wexler-Cohen Y, Stevens GC, Barnoy E, van der Bliek AM, Johnson P (2014) A dynamin-related protein contributes to Trichomonas vaginalis hydrogenosomal fission. FASEB J 28:1113–1121CrossRefGoogle Scholar
  59. Widermann JG, Gawryluk RMR, Gray MW, Dacks JB (2013) The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol 30:2044–2049CrossRefGoogle Scholar
  60. Yarlett N, Hann AC, Lloyd D, Williams AG (1981) Hydrogenosomes in the rumen protozoan Dasytricha ruminantium Schuberg. Biochem J 200:365–372CrossRefGoogle Scholar
  61. Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21:15–19CrossRefGoogle Scholar
  62. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739CrossRefGoogle Scholar
  63. Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marlene Benchimol
    • 1
  • Wanderley de Souza
    • 2
  1. 1.Universidade do Grande Rio, UNIGRANRIODuque de CaxiasBrazil
  2. 2.Laboratório de Ultraestrutura Celular Hertha MeyerInstituto de Biofísica Carlos Chagas Filho, Núcleo de Biologia Estrutural e Bioimagens-CENABIO, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations