Advertisement

Geostatistical Variography for Geospatial Variables

  • Y. Z. Ma
Chapter

Abstract

This chapter presents geostatistical characterizations of geospatial data, focusing on the description of the spatial continuity/discontinuity of reservoir properties using variogram, covariance or correlation function. Other geostatistical methods used for modeling reservoir properties are presented in Chaps.  16,  17 and  18.

References

  1. Armstrong, M., & Jabin, R. (1981). Variogram models must be positive-definite. Mathematical Geology, 13(5), 455–459.CrossRefGoogle Scholar
  2. Armstrong, M., Galli, A. G., Le Loc’h, G., Geffroy, F., & Eschard, R. (2003). Plurigaussian simulations in geosciences. Berlin: Springer.CrossRefGoogle Scholar
  3. Barnes, R. J. (1991). The variogram sill and the sample variance. Mathematical Geology, 23(4), 673–678.CrossRefGoogle Scholar
  4. Carle, S. F., & Fogg, G. E. (1996). Transition probability-based indicator geostatistics. Mathematical Geology, 28(4), 453–476.MathSciNetCrossRefGoogle Scholar
  5. Chiles, J. P., & And Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). Hoboken: Wiley.CrossRefGoogle Scholar
  6. Dubrule, O. (2017). Indicator variogram models: Do we have much choice? Mathematical Geosciences, 49(4), 441–465.  https://doi.org/10.1007/s11004-017-9678-x.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Genton, M. G. (1998). Variogram fitting by generalized least squares using an explicit formula for the covariance structure. Mathematical Geology, 30(4), 323–345.MathSciNetCrossRefGoogle Scholar
  8. Gringarten, E., & Deutsch, C. V. (2001). Variogram interpretation and modeling. Mathematical Geology, 33, 507–535.CrossRefGoogle Scholar
  9. Jones, T., & Ma, Y. Z. (2001). Geologic characteristics of hole-effect variograms calculated from lithology-indicator variables. Mathematical Geology, 33(5), 615–629.CrossRefGoogle Scholar
  10. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. New York: Academic.Google Scholar
  11. Journel, A. G., & Froidevaux, R. (1982). Anisotropic hole-effect modeling. Mathematical Geology, 14(3), 217–239.CrossRefGoogle Scholar
  12. Krige, D. G. (1951). A statistical approach to some basic mine valuation problems in the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52, 119–139.Google Scholar
  13. Ma, Y. Z., & Jones, T. A. (2001). Modeling hole-effect variograms of lithology-indicator variables. Mathematical Geology, 33(5), 631–648.CrossRefGoogle Scholar
  14. Ma, Y. Z., Seto, A., & Gomez, E. (2008). Frequentist meets spatialist: A marriage made in reservoir characterization and modeling. SPE 115836, SPE ATCE, Denver, CO.Google Scholar
  15. Ma, Y. Z., Seto, A., & Gomez, E. (2009). Depositional facies analysis and modeling of Judy Creek reef complex of the Late Devonian Swan Hills, Alberta, Canada. AAPG Bulletin, 93(9), 1235–1256.  https://doi.org/10.1306/05220908103.CrossRefGoogle Scholar
  16. Matheron, G. (1971). The theory of regionalized variables and their applications: Textbook of center of geostatistics. Fontainebleau, France, 212p.Google Scholar
  17. Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5, 439–468.MathSciNetCrossRefGoogle Scholar
  18. Matheron, G. (1989). Estimating and choosing: An essay on probability in practice. Berlin: Springer, 141p.CrossRefGoogle Scholar
  19. Olea, R. A. (1991). Geostatistical glossary and multilingual dictionary. New York: Oxford University Press.Google Scholar
  20. Papoulis, A. (1977). Signal analysis. New York: McGraw Hill Book Company.zbMATHGoogle Scholar
  21. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (3rd ed.). Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Y. Z. Ma
    • 1
  1. 1.SchlumbergerDenverUSA

Personalised recommendations