Advertisement

Facies and Lithofacies Classifications from Well Logs

  • Y. Z. Ma
Chapter

Abstract

This chapter presents methods for classifying lithofacies from well logs. Lithofacies are a discrete variable that describes categories of the rock quality, defined as having two or more states. Lithofacies represent small- to intermediate-scale heterogeneities in geological analysis of subsurface formations. Different lithofacies often have different petrophysical properties and can impact subsurface fluid flow. Cores are generally limited, and lithofacies data are often derived from well logs in reservoir characterization.

References

  1. Bhuyan, K., & Passey, Q. R. (1994). Clay estimation from GR and neutron-density porosity logs. Presented at the SPWLA 35th Annual Logging Symposium.Google Scholar
  2. Busch, J. M., Fortney, W. G., & Berry, L. N. (1987). Determination of lithology from well logs by statistical analysis. SPE Formation Evaluation, 2(4), 412–418.CrossRefGoogle Scholar
  3. Dewan, J. T. (1983). Essentials of modern open-hole log interpretation. Tulsa: PennWell Books, 361 p.Google Scholar
  4. Doveton, J. H. (2014). Principles of mathematical petrophysics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  5. Dubois, M. K., Bohling, G. C., & Chakrabarti, S. (2007). Comparison of four approaches to a rock facies classification problem. Computers & Geosciences, 33, 599–617.CrossRefGoogle Scholar
  6. Jain, A., Narasimha, M., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264–323.CrossRefGoogle Scholar
  7. Jiang, S., et al. (2019). Shale geoscience and engineering for petroleum exploration and development. Cambridge: Cambridge University Press.Google Scholar
  8. Kaufman, L., & Rousseeuv, P. J. (1990). Finding groups in data. New York: Wiley.CrossRefGoogle Scholar
  9. Kettenring, J. R. (2006). The practice of clustering analysis. Journal of Classification, 23, 3–30.MathSciNetCrossRefGoogle Scholar
  10. Khalid, Z. A., Lefranc, M., Phillips, J., Jordan, C., Ralphie, B., Zainal, N. F. S., & M Khir, K. E. A. (2014). Integrated reservoir characterization of a Miocene carbonate buildup without the benefit of core data – A case study from Central Luconia Province, Sarawak. International Petroleum Technology Conference.  https://doi.org/10.2523/IPTC-18223-MS.
  11. Ma, Y. Z. (2011). Lithofacies clustering using principal component analysis and neural network: applications to wireline logs. Mathematical Geosciences, 43(4), 401–419.CrossRefGoogle Scholar
  12. Ma, Y. Z., & Gomez, E. (2015). Uses and abuses in applying neural networks for predicting reservoir properties. Journal of Petroleum Science and Engineering, 133, 66–75.  https://doi.org/10.1016/j.petrol.2015.05.006.CrossRefGoogle Scholar
  13. Ma, Y. Z., Wang, H., Sitchler, J., et al. (2014). Mixture Decomposition and Lithofacies Clustering Using Wireline Logs. Journal of Applied Geophysics, 102, 10–20.  https://doi.org/10.1016/j.jappgeo.2013.12.011.CrossRefGoogle Scholar
  14. Ma, Y. Z., Moore, W. R., Gomez, E., Luneau, B., Kaufman, P., Gurpinar, O., & Handwerger, D. (2015a). Wireline log signatures of organic matters and lithofacies classifications for shale and tight carbonate reservoirs. In Y. Z. Ma & S. Holditch (Eds.), Handbook of unconventional resources (pp. 151–171). Waltham: Elsevier.Google Scholar
  15. Ma, Y. Z., Moore, W. R., Gomez, E., Clark, W. J., & Zhang, Y. (2015b). Tight gas sandstone reservoirs, Part 1: Overview and lithofacies. In Y. Z. Ma & S. Holditch (Eds.), Handbook of unconventional resources (pp. 405–427). Waltham: Elsevier.Google Scholar
  16. McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley, 419p.CrossRefGoogle Scholar
  17. Moore, W. R., Ma, Y. Z., Urdea, J., & Bratton, T. (2011). Uncertainty analysis in well log and petrophysical interpretations. In Y. Z. Ma & P. LaPointe (Eds.), Uncertainty analysis and reservoir modeling (AAPG Memoir 96). Tulsa: American Association of Petroleum Geologists.Google Scholar
  18. Schlumberger. (1999). Log interpretation principles/applications, 8th print. Sugar Land, Texas: Schlumberger Educational Services.Google Scholar
  19. Scott, D. W. (1992). Multivariate density estimation. New York: Wiley, 317p.CrossRefGoogle Scholar
  20. Tilke, P. G., Allen, D., & Gyllensten, A. (2006). Quantitative analysis of porosity heterogeneity: Application of geostatistics to borehole image. Mathematical Geology, 38(2), 155–174.CrossRefGoogle Scholar
  21. Wang, G., & Carr, T. R. (2012). Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian basin. Mathematical Geoscience, 44, 975–1004.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Y. Z. Ma
    • 1
  1. 1.SchlumbergerDenverUSA

Personalised recommendations