Spectrum of US pathology: Tissue pathology and clinical application

  • Jeimylo C. de Castro


Pediatric ultrasound is not necessarily a miniature of an adult ultrasound. There are peculiar features in the musculoskeletal system of the developing children that are unique, and if one is not familiar with the image, it may be misconstrued as an abnormality. Ultrasound of the pediatric musculoskeletal system is well tolerated by children with no risks of ionizing radiation and without the need of sedation. It has the capability of imaging soft tissues, cartilage, tendons, ligaments, muscles, peripheral nerves, vascular structures, and joints. It is usually the imaging of choice when assessing the hip joints of the neonates and infants to check effusions, subluxations, and dislocations. The portability of ultrasound also makes it accessible to any other musculoskeletal structures in the developing children with its constantly changing features from infancy to adolescent stage. It is therefore important to study carefully the normal patterns of the musculoskeletal system of developing children in order to identify the abnormality that goes with pathologic conditions. The spectrum of pathology in children is very challenging and is still evolving at this stage; thus, more studies are needed to optimize the dynamic patterns in these age groups. I have reviewed and described the patterns presently available and I am sure there will be changes in the future as more studies are made available.


Pediatric ultrasound Pediatric musculoskeletal Ultrasound MSK ultrasound Pediatric pathology Tissue pathology Spectrum of ultrasound pathology 


  1. 1.
    Patil P, Dasgupta B. Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Ther Adv Musculoskelet Dis. 2012;4(5):341–55. Scholar
  2. 2.
    Smith J, Finnoff JT. Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundam. PM R. 2009;1(1):64–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Kane D, Balint PV, Sturrock R, Grassi W. Musculoskeletal ultrasound—a state of the art review in rheumatology. Part 1: Current controversies and issues in the development of musculoskeletal ultrasound in rheumatology. Rheumatology. 2004;43(7):823–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Dias JM, Costa MM, Canhao H, Saraiva F, da Silva JA. Musculoskeletal ultrasound in paediatric rheumatology: a retrospective analysis. Acta Rheumatol Port. 2014;39(4):309–14.Google Scholar
  5. 5.
    Karnik AS, Karnik A, Joshi A. Ultrasound examination of pediatric musculoskeletal diseases and neonatal spine. Indian J Pediatr. 2016;83(6):565–77. Epub 2016 Feb 1. Review.CrossRefPubMedGoogle Scholar
  6. 6.
    DiPietro MA, Leschied JR. Pediatric musculoskeletal ultrasound. Pediatr Radiol. 2017;47:1144–54. Scholar
  7. 7.
    Roth J, Jousse-Joulin S, Alcalde M, Magni-Manzoni S, Rodriguez A, Tzaribachev N, Iagnocco A, Naredo E, D’Agostino MA, Collado P. OMERACT definitions for the sonographic features of the normal pediatric joint. Arthritis Care Res (Hoboken). 2015;67(1):136–42.CrossRefGoogle Scholar
  8. 8.
    Hryhorczuk AL, Restrepo R, Lee EY. Pediatric musculoskeletal ultrasound: practical imaging approach. Am J Roentgenol. 2016;206(5):W62–72.CrossRefGoogle Scholar
  9. 9.
    Spannow HA, Stenboeg E, Pfeiffer-Jensen M, Herlin T. Ultrasound measurement of joint cartilage thickness in large and small joints in healthy children: a clinical pilot study assessing observer variability. Pediatr Rheumatol Online J. 2007;5:3. Scholar
  10. 10.
    Tok F, Demirkaya E, Ozcakar L. Musculoskeletal ultrasound in pediatric rheumatology. Pediatr Rheumatol Online J. 2011;9:25. Scholar
  11. 11.
    McCune WJ, Dedrick DK, Aisen AM, MacGuire A. Sonographic evaluation of osteoarthritic femoral condylar cartilage. Correlation with operative findings. Clin Orthop. 1990;254:230–5.Google Scholar
  12. 12.
    Aisen AM, McCune WJ, MacGuire A, et al. Sonographic evaluation of the cartilage of the knee. Radiology. 1984;153:781–4.CrossRefGoogle Scholar
  13. 13.
    Grassi W, Lamanna G, Farina A, Cervini C. Sonographic imaging of normal and osteoarthritic cartilage. Semin Arthritis Rheum. 1999;28:398–403.CrossRefGoogle Scholar
  14. 14.
    Panghaal V, Janow G, Angela T, Ilowite N, Levin TL. Normal epiphyseal cartilage measurements in the knee in children: an alternative sonographic approach. J Ultrasound Med. 2012;31:49–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Jousse-Joulin S, Cangemi C, Gerard S, Gestin S, Luc B, Parscau L, Devauchelle-Pensec V, Saraux A. Normal Sonoanatomy of the paediatric entheses including echostructure and vascularization changes during growth. Eur Radiol. 2015;25(2):2143–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Ogden JA, Hempton RF, Southwick WO. Development of the tibial tuberosity development. Anat Rec. 1974;182:431–46.CrossRefGoogle Scholar
  17. 17.
    Pesquer L, Scepi M, Bihan M, et al. Normal ultrasound anatomy of the triangular fibrocartilage of the wrist: a study on cadavers and on healthy subjects. J Clin Ultrasound. 2009;37:194–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee JC, Healy JC. Normal sonographic anatomy of the wrist and hand. Radiographics. 2005;25:1577–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Shahin AA, el-Moffy SA, el-Shiek EA, Hafez HA, Ragab OM. Power Doppler sonography in the evaluation and follow-up of knee involvement in patients with juvenile idiopathic arthritis. Z Rheumatol. 2001;60:148–55. Scholar
  20. 20.
    Chauvin NA, Ho-Fung V, Jaramillo D, Edgar JC, Weiss PF. Ultrasound of the joints and entheses in healthy children. Pediatr Radiol. 2015;45:1344–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Pradsgaard DO, Fiirgaard B, Spannow AH, Heuck C, Herlin T. Cartilage thickness of the knee joint in juvenile idiopathic arthritis: comparative assessment by ultrasonography and magnetic resonance imaging. J Rheumatol. 2015;42:534–40.CrossRefGoogle Scholar
  22. 22.
    Sureda D, Quiroga S, Arnal C, Boronat M, Andreu J, Casas L. Juvenile rheumatoid arthritis of the knee: evaluation with US. Radiology. 1994;190(2):403–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Magni-Manzoni S. Ultrasound measurement of cartilage thickness in childhood arthritis—Target the tissue, tailor the technique. J Rheumatol. 2015;42(3):369–2.CrossRefGoogle Scholar
  24. 24.
    Magni-Manzoni S. Ultrasound in juvenile arthritis. Pediatr Rheumatol. 2016;14:33. Scholar
  25. 25.
    Pradsgaard DO, Spannow AH, Heuck C, Herlin T. Decreased cartilage thickness in juvenile idiopathic arthritis assessed by ultrasonography. J Rheumatol. 2013;40:1596–603.CrossRefPubMedGoogle Scholar
  26. 26.
    Buchman RF, Jaramillo D. Imaging of articular disorders in children. Radiol Clin N Am. 2004;42:151–68. Scholar
  27. 27.
    Magni-Manzoni S, Rossi F, Pistorio A, Temporini F, Viola S, Beluffi G. Prognostic factors for radiographic progression, radiographic damage, and disability in juvenile idiopathic arthritis. Arthritis Rheum. 2003;48:3509–17. Scholar
  28. 28.
    Conaghan PG, O’Connor P, McGonagle D, et al. Elucidation of the relationship between synovitis and bone damage: a randomized MRI study of individual joints in patients with early RA. Arthritis Rheum. 2003;48:64–7.CrossRefGoogle Scholar
  29. 29.
    Ravelli A. Martini a: early predictors of outcome in juvenile idiopathic arthritis. Clin Exp Rheumatol. 2003;21:89–93.Google Scholar
  30. 30.
    Ejbjerg BJ, Vestergaard A, Jacobsen S, Thomsen H, Ostergaard M. Conventional radiography requires a MRI-estimated bone volume loss of 20% to 30% to allow certain detection of bone erosions in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res Ther. 2006;8:R59.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wakefield RJ, Gibbon WW, Conaghan PG, et al. The value of sonography in the detection of bone erosions in patients with rheumatoid arthritis: a comparison with conventional radiography. Arthritis Rheum. 2000;43:2762–70.CrossRefGoogle Scholar
  32. 32.
    Malattia C, Damasio MB, Magnaguagno F, Pistorio A, Valle M, Martinolli C, Viola S, Buoncompagni A, Loy A, Ravelli A, Toma P, Martini A. Magnetic resonance imaging, ultrasonography, and conventional radiography in the assessment of bone erosions in juvenile idiopathic arthritis. Arthritis Rheum (Arthritis Care Res). 2008;58(12):1764–72.CrossRefGoogle Scholar
  33. 33.
    Ostergaard M, Peterfy C, Conaghan P, McQueen F, Bird P, Ejbjerg BJ, Shnier R, O’Connor P, Klarlund M, Emery P, Genant H, Lassere M, Edmonds J. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Core set of MRI acquisitions, joint pathology definitions and the OMERACT RA-MRI scoring system. J Rheumatol. 2003;30(6):1385–6.PubMedGoogle Scholar
  34. 34.
    Wakefield RJ, Balint PV, Szkudlarek M, et al. Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol. 2005;32:2485–7.PubMedGoogle Scholar
  35. 35.
    Tamas MM, Filippucci E, Becciolini A, Gutierrez M, Di Geso L, Bonfiglioli K, Voulgari PV, Salaffi F, Grassi W. Bone erosions in rheumatoid arthritis: ultrasound findings in the early stages of the disease. Rheumatol. 2014;53(6):1100–7.CrossRefGoogle Scholar
  36. 36.
    Boutry N, Larde A, Demondion X, et al. Metacarpophalangeal joints at US in asymptomatic volunteers and cadaveric specimens. Radiology. 2004;232:716–24.CrossRefGoogle Scholar
  37. 37.
    Wright SA, Filippucci E, McVeigh C, et al. High-resolution ultrasonography of the first metatarsal phalangeal joint in gout: a controlled study. Ann Rheum Dis. 2007;66:859–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Dohn UM, Terslev L, Szkudlarek M, Hansen MS, Hetland ML, Hansen A, Madsen OR, Hasselquist M, Moller J, Ostergaard M. Detection, scoring and volume assessment of bone erosions by ultrasonography in rheumatoid arthritis: comparisons with CT. Ann Rheum Dis. 2012; Scholar
  39. 39.
    Szkudlarek M, Court-Payen M, Jacobsen S, et al. Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis. Arthritis Rheum. 2003;48:955–62.CrossRefGoogle Scholar
  40. 40.
    Døhn UM, Ejbjerg BJ, Hasselquist M, et al. Detection of bone erosions in rheumatoid arthritis wrist joints with magnetic resonance imaging, computed tomography and radiography. Arthritis Res Ther. 2008;10:R25.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gutierrez M, Filippucci E, Ruta S, et al. Inter-observer reliability of high-resolution ultrasonography in the assessment of bone erosions in patients with rheumatoid arthritis: experience of an intensive dedicated training programme. Rheumatology (Oxford). 2011;50:373–80.CrossRefGoogle Scholar
  42. 42.
    Sommier JP, Michel-Batot C, Sauliere N, et al. Structural lesions in RA: proposition for a new semiquantitative score (ScUSSe: scoring by ultrasound structural erosion). Arthritis Rheum. 2006;53:S140.Google Scholar
  43. 43.
    Wakefield RJ, Balint PV, Szkudlarek M, Filippucci E, Backhaus M, D’Agostino MA, Naredo Sanchez E, Iagnocco A, Schmidt WA, Bruyn GAW, Bruyn G, Kane D, O’Connor PJ, Manger B, Joshua F, Koski J, Grassi W, Lassere MND, Swen N, Kainberger F, Klauser A, Ostergaard M, Brown AK, Machold KP, Conaghan PG. OMERACT 7 special interest group. Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol. 2005;32(12):2485–7.PubMedGoogle Scholar
  44. 44.
    Grassi W. Clinical evaluation versus ultrasonography: who is the winner? J Rheumatol. 2003;30:908–9.PubMedGoogle Scholar
  45. 45.
    Kane D, Balint PV, Sturrock RD. Ultrasonography is superior to clinical examination in the detection and localization of knee joint effusion in rheumatoid arthritis. J Rheumatol. 2003;30:966–71.PubMedGoogle Scholar
  46. 46.
    Kane D, Grassi W, Sturrock R, Balint PV. Musculoskeletal ultrasound–a state of the art review in rheumatology. Part 2: clinical indications for musculoskeletal ultrasound in rheumatology. Rheumatology (Oxford). 2004;43:829–38.CrossRefGoogle Scholar
  47. 47.
    Rubin JM, Bude RO, Carson PL, et al. Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology. 1994;190:853–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lamer S, Sebag GH. MRI and ultrasound in children with juvenile chronic arthritis. Eur J Radiol. 2000;33:85–93.CrossRefPubMedGoogle Scholar
  49. 49.
    Hanaa S, El-Banna, Nada DW, Hussein MS, Hablas SA, Darwish NF, Abu-Zaid MH, Gadou SE. Role of musculoskeletal ultrasonography in the detection of subclinical synovitis in oligo and polyarticular juvenile idiopathic arthritis in children. Egypt Rheumatol. 2018; Scholar
  50. 50.
    Terslev L, Torp-Pederson S, Qvistgaard E, et al. Estimation of inflammation by Doppler ultrasound: quantitative changes after intra-articular treatment in rheumatoid arthritis. Ann Rheum Dis. 2003;62:1049–53.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Newman JS, Laing TJ, McCarthy CJ, Adler RS. Power Doppler sonography of synovitis: assessment of therapeutic response—preliminary observations. Radiology. 1996;198:582–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Terslev L, Naredo E, Aegerter P, Wakefield RJ, Backhaus M, Balint P, Bruyn GAW, Iagnocco A, Jousse-Joulin A, Schmidt WA, Szkudlarek M, Conaghan PG, Filippucci E, D’Agostino MA. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-part 2: reliability and application to multiple joints of a standardised consensus-based scoring system. Rheum Musculoskelet Dis. 2017;3(1):e000427.Google Scholar
  53. 53.
    Benjamin M, Ralphs JR. Entheses—the bony attachments of tendons and ligaments. Ital J Anat Embryol. 2001;106(2 Suppl 1):151–7.PubMedGoogle Scholar
  54. 54.
    Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng. 2013;15:201–26.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR. The skeletal attachment of tendons—tendon “en-theses”. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(4):931–45.CrossRefPubMedGoogle Scholar
  56. 56.
    Apostolakos J, Durant TJS, Dwyer CR, Russell RP, Weinreb JH, Alaee F, Beitzel K, McCarthy MB, Cole MP, Mazzocca AD. The Enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J. 2014 Jul-Sep;4(3):333–42.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Padulo J, Oliva F, Frizziero A, Maffulli N. Muscles, ligaments and tendons journal. Basic principles and recommendations in clinical and field science research. MLTJ. 2013;4:250–2.Google Scholar
  58. 58.
    Angeline ME, Rodeo SA. Biologics in the management of rotator cuff surgery. Clin Sports Med. 2012;31(4):645–63.CrossRefPubMedGoogle Scholar
  59. 59.
    Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S. The “enthesis organ” concept:why enthesopathies may not present as focal insertional disorders. Arthritis Rheum. 2004;50:3306–13.CrossRefPubMedGoogle Scholar
  60. 60.
    Lin C, Diab M, Milojevic D. Grey-scale ultrasound findings of lower extremity entheses in healthy children. Pediatr Rheumatol Online J. 2015;13:14.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kehl AS, Corr M, Weisman MH. Enthesitis: new insights into pathogenesis, diagnostic, modalities and treatment. Arthritis Rheum. 2016 Feb;68(2):312–22.CrossRefGoogle Scholar
  62. 62.
    Bandinelli F, Prignano F, Bonciani D, Bartoli F, Collaku L, Candelieri A, et al. Ultrasound detects occult entheseal involvement in early psoriatic arthritis independently of clinical features and psoriasis severity. Clin Exp Rheumatol. 2013;31:219–24.PubMedGoogle Scholar
  63. 63.
    Spadaro A, Iagnocco A, Perrotta FM, Modesti M, Scarno A, Valesini G. Clinical and ultrasonography assessment of peripheral enthesitis in ankylosing spondylitis. Rheumatology (Oxford). 2011;50:2080–6.CrossRefGoogle Scholar
  64. 64.
    Gmuca A, Weiss PF. Evaluation and treatment of childhood enthesitis-related arthritis. Curr Treatm Opt Rheumatol. 2015;1(4):350–64.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Weiss PF, Klink AJ, Behrens EM, et al. Enthesitis in an inception cohort of enthesitis-related arthritis. Arthritis Care Res (Hoboken). 2011;63(9):1307.CrossRefGoogle Scholar
  66. 66.
    Burgos-Vargas R, Pacheco-Tena C, Vazquez-Mellado J. A short-term follow-up of enthesitis and arthritis in the active phase of juvenile onset spondyloarthropathy. Clin Exp Rheumatol. 2002;20:727–31.PubMedGoogle Scholar
  67. 67.
    Shenoy S, Agarwal A. Sonologic enthesitis in children with enthesitis-related arthritis. Clin Exp Rheumatol. 2016;34(1):143–7.PubMedGoogle Scholar
  68. 68.
    Aydin SZ, Karadag O, Filippucci E, Atagunduz P, Akdogan A, Kalyoncu U, et al. Monitoring Achilles enthesitis in ankylosing spondylitis during TNF-alpha antagonist therapy: an ultrasound study. Rheumatology (Oxford). 2010;49(3):578–82.CrossRefGoogle Scholar
  69. 69.
    Balint PV, Kane D, Wilson H, et al. Ultrasonography of entheseal insertions in the lower limb in spondyloarthropathy. Ann Rheum Dis. 2002;61:905–10.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    de Miguel E, Cobo T, Munoz-Fernandez S, et al. Validity of enthesis ultrasound assessment in spondyloarthropathy. Ann Rheum Dis. 2008;68(2):169–74.Google Scholar
  71. 71.
    Alcalde M, Acebes JC, Cruz M, et al. A sonographic enthesitic index of lower limbs is a visible tool in the assessment of ankylosing spondylitis. Ann Rheum Dis. 2007;66:1015–9.CrossRefPubMedGoogle Scholar
  72. 72.
    D’Agostino MA, Said-Nahal R, Hacquard-Bouder C, et al. Assessment of peripheral enthesitis in the spondyloarthropathies by ultrasonography combined with power Doppler: a cross-sectional study. Arthritis Rheum. 2003;48:523–33.CrossRefPubMedGoogle Scholar
  73. 73.
    Hryzhorczuk AL, Restreppo R, Lee EY. Pediatric musculoskeletal ultrasound: practical imaging approach. Am J Roentgenol. 2016;206(5):W62–72.CrossRefGoogle Scholar
  74. 74.
    Grechenig W, Mayr JM, Peicha G, Hammerl R, Schatz B, Grechenig S. Sonoanatomy of the Achilles tendon insertion in children. J Clin Ultrasound. 2004;32:338–43.CrossRefPubMedGoogle Scholar
  75. 75.
    Simpson M, Rio E, Cook J. At what age do children and adolescents develop lower limb tendon pathology or tendinopathy? A systematic review and meta-analysis. Sports Med. 2016;46:545–57.CrossRefPubMedGoogle Scholar
  76. 76.
    Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409–16.CrossRefPubMedGoogle Scholar
  77. 77.
    Khan KM, Cook JL, Kannus P, et al. Time to abandon the “tendinitis” myth. BMJ. 2002;324(7338):626–7.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol. 2010;6(5):262–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Riley G. The pathogenesis of tendinopathy: a molecular perspective. Rheumatology (Oxford). 2004;43(2):131–42.CrossRefGoogle Scholar
  80. 80.
    Scott A, Docking S, Vicenzino B, et al. Sports and exercise-related tendinopathies: a review of selected topical issues by participants of the second international scientific tendinopathy symposium (ISTS) Vancouver 2012. Br J Sports Med. 2013;47(9):536–44.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Grassi W, Filippucci E, Farina A, Cervini C. Sonography imaging of tendons. Arthritis Rheum. 2000;43:969–76.CrossRefPubMedGoogle Scholar
  82. 82.
    Collado P, Naredo E, Calvo C. Assessment of the joint recess and tendon sheaths in healthy children by high-resolution B-mode and power Doppler sonography. Clin Exp Rheumatol. 2007;25:915–21.PubMedGoogle Scholar
  83. 83.
    Seol JG, Callahan MJ. Pediatric musculoskeletal ultrasound. Ultrasound Clin. 2013;8(3):459–75.CrossRefGoogle Scholar
  84. 84.
    Hwang HE, Hsu TR, Lee YH, Wang HK, Chiou HJ, Niu DM. Muscle ultrasound: a useful tool in newborn screening for infantile onset Pompe disease. Medicine (Baltimore). 2017;96(44):e8415.CrossRefGoogle Scholar
  85. 85.
    Brandsma R, Verbeek RJ, Maurits NM, van der Hoeven JH, Brouwer OF, den Dunnen WFA, Burger H, Sival DA. Visual screening of muscle ultrasound images in children. Ultrasound Med Biol. 2014;40(10):2345–51.CrossRefPubMedGoogle Scholar
  86. 86.
    Pillen S. Skeletal muscle ultrasound. Eur J Translat Myol. 2010;1(4):145–55.CrossRefGoogle Scholar
  87. 87.
    Lee JC, Healy J. Sonography of lower limb muscle injury. Am J Roentgenol. 2004;182:341–61.CrossRefGoogle Scholar
  88. 88.
    Heckmatt JZ, Pier N, Dubowitz V. Measurement of quadriceps muscle thickness and subcutaneous tissue thickness in normal children by real-time ultrasound imaging. J Clin Ultrasound. 1988;16:171–6.PubMedGoogle Scholar
  89. 89.
    Heckmatt JZ, Pier N, Dubowitz V. Measurement of quadriceps femoris muscle atrophy and hypertrophy in neuromuscular disease in children. J Clin Ultrasound. 1988;16:177–81.CrossRefPubMedGoogle Scholar
  90. 90.
    Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol. 2004;91:116–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Reimers CD, Schlotter B, Eicke BM, Witt TN. Calf enlargement in neuromuscular diseases: a quantitative ultrasound study in 350 patients and review of the literature. J Neurol Sci. 1996;143:46–56.CrossRefPubMedGoogle Scholar
  92. 92.
    Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med. 1993;12:73–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet. 1980;1:1389–90.PubMedGoogle Scholar
  94. 94.
    Heckmatt JZ, Pier N, Dubowitz V. Real-time ultrasound imaging of muscles. Muscle Nerve. 1988;11:56–65.CrossRefPubMedGoogle Scholar
  95. 95.
    Pillen S, Tak R, Lammens M, Verrijp K, Arts I, Zwarts M, Van Engelen B, Verrips A. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol. 2009;35:443–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Zuberi SM, Matta N, Nawaz S, Stephenson JB, McWilliam RC, Hollman A. Muscle ultrasound in the assessment of suspected neuromuscular disease in childhood. Neuromuscul Disord. 1999;9:203–7.CrossRefPubMedGoogle Scholar
  97. 97.
    Pillen S, Verrips A, van Alfen N, Arts IM, Sie LT, Zwarts MJ. Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul Disord. 2007;17:509–16.CrossRefPubMedGoogle Scholar
  98. 98.
    Walker FO, Donofrio PD, Harpold GJ, Ferrell WG. Sonographic imaging of muscle contraction and fasciculations: a correlation with electromyography. Muscle Nerve. 1990;13:33–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Pillen S, Nienhuis M, van Dijk JP, Arts IM, van Alfen N, Zwarts MJ. Muscles alive: ultrasound detects fibrillations. Clin Neurophysiol. 2009;120:932–6.CrossRefPubMedGoogle Scholar
  100. 100.
    Martinolli C, Bianchi S, Cohen M, et al. Ultrasound of peripheral nerves. J Radiol. 2005;86:1869–78.CrossRefGoogle Scholar
  101. 101.
    Silvestri E, Martinolli C, Derchi LE, et al. Echotexture of peripheral nerves: correlation between US and histologic findings and criteria to differentiate tendon. Radiology. 1995;197:291–6.CrossRefPubMedGoogle Scholar
  102. 102.
    Jacobson JA, Wilson TJ, Yang LJS. Sonography of the common peroneal nerve disorders with clinical correlation. J Ultrasound Med. March 2016;35(4):683–93.CrossRefPubMedGoogle Scholar
  103. 103.
    Martinoli C, Schenone A, Bianchi S, Mandich P, Caponetto Abbruzzese M, et al. Sonography of the median nerve in Charcot-Marie-tooth disease. AJR Am J Roentgenol. 2002;178:1553–6.CrossRefPubMedGoogle Scholar
  104. 104.
    Yiu EM, Brockley CR, Lee KJ, Carroll K, de Valle K, Kennedy R, Rao P, Delatycki MB, Ryan MM. Peripheral nerve ultrasound in pediatric Charcot-Marie-Tooth disease type 1A. Neurology. 2015;84(6):552.CrossRefPubMedGoogle Scholar
  105. 105.
    Noto Y. Ultrasound diagnosis of Charcot-Marie-tooth disease. Brain Nerve. 2014;66(3):237–46.PubMedGoogle Scholar
  106. 106.
    Noto Y, Shiga K, Tsuji Y, Mizuta I, Higuchi Y, Hashiguchi A, Takashima H, Nakagawa M, Mizuno T. Nerve ultrasound depicts peripheral nerve enlargement in patients with genetically distinct Charcot-Marie-Tooth disease. J Neurol Neurosurg Psychiatry. 2014;86(4):378–84.CrossRefGoogle Scholar
  107. 107.
    Walker FO, Ouvrier R. Seeing big nerves in small children (Ed). Neurology. 2015;84(6):569CrossRefPubMedGoogle Scholar
  108. 108.
    Erez O, Khalil JG, Legakis JE, Tweedle J, Kaminski E, Reynolds RA. Ultrasound evaluation of ulnar nerve anatomy in the pediatric population. J Pediatr Orthop. Sept 2012;32(6):641–6.CrossRefPubMedGoogle Scholar
  109. 109.
    Lee J, Bidwell T, Metcalfe R. Ultrasound in pediatric peripheral nerve injuries: can this affect our surgical decision making? A preliminary report. J Pediatr Orthop. 2013;33(2):152–8.CrossRefPubMedGoogle Scholar
  110. 110.
    Dohn UM, Ejbjerg BJ, Court-Payen M, Hasselquist M, Narvestad E, Szkudlarek M, Moller JM, Thomsen HS, Ostergaard M. Are bone erosions detected by magnetic resonance imaging and ultrasonography true erosions? A comparison with computed tomography in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res Ther. 2006;8(4):R110. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jeimylo C. de Castro
    • 1
    • 2
  1. 1.Physical Medicine and Rehabilitation DepartmentThe Medical City-South LuzonSanta RosaPhilippines
  2. 2.SMARTMD Center for Non-Surgical Pain InterventionsMakati CityPhilippines

Personalised recommendations