Applied Pediatrics Sonoanatomy

  • Yasser El Miedany
  • Ingrid Möller
  • Maribel Miguel-Pérez


Given the special characteristics of the pediatric musculoskeletal system, US has been considered one of the best imaging modalities for examination of children of all ages. In comparison to other imaging tools, US has certain advantages, as it is dynamic, mobile, cheaper, instantly bedside accessible, easy to combine with clinical assessment (interactivity), and noninvasive. Furthermore, US does not require sedation, which facilitates repetitive examinations. Also, assessment of multiple locations is possible during the same session. Agitation is rarely a problem, and children can be seated in their parents’ lap, or they can even play while being examined. This chapter will help you cross the bridge between basic sonoanatomy sciences and day-to-day practice. After presenting the fundamentals of pediatric sonoanatomy and the basic science of musculoskeletal development, it will present a practical discussion of the sonoanatomy of pediatric joints and soft tissue, its application in standard practice, and the possible sonopathology. The chapter will conclude with the advances in pediatric ultrasonography and new US techniques expected in the future.


Pediatric sonoanatomy Pediatric sonopathology applied sonoanatomy Fat pad Epiphyses Growth place Juvenile idiopathic arthritis Bone Muscles Tendons Cartilage Bone age Elastography 


  1. 1.
    Steele, D. Gentry; Claud A. Bramblett (1988). The anatomy and biology of the human skeleton. College Station: Texas A&M University Press; 1988. p. 4. ISBN 0-89096-300-2.Google Scholar
  2. 2.
    Marshall Cavendish Mammal anatomy: an illustrated guide. New York: Marshall Cavendish. 2010. p. 129. ISBN 9780761478829.Google Scholar
  3. 3.
    Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3 Scholar
  4. 4.
    Haines RW. The evolution of epiphyses and of endochondral bone. Biol Rev. 1942;17:267–92.CrossRefGoogle Scholar
  5. 5.
    Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development. 2015;142:4191–204. Scholar
  6. 6.
    Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today. 2008;84:228–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Kannus P, Jozsa L, Järvinen TAH, Järvinen TLN, Kvist M, Natri A, Järvinen M. Location and distribution of non-collagenous matrix proteins in musculoskeletal tissues of rat. Histochem J. 1998;30:799–810.CrossRefPubMedGoogle Scholar
  8. 8.
    Juneja SC, Veillette C. Defects in tendon, ligament, and enthesis in response to genetic alterations in key proteoglycans and glycoproteins: a review. Arthritis. 2013;2013:154812.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 2013;99:203–22.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, Hiraki Y, Shukunami C. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development. 2013;140:2280–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Birch HL, Thorpe CT, Rumian AP. Specialization of extracellular matrix for function in tendons and ligaments. Muscles Ligaments Tendons J. 2013;3:12–22.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aslan H, Kimelman-Bleich N, Pelled G, Gazit D. Molecular targets for tendon neoformation. J Clin Invest. 2008;118:439–44.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang AH, Lu HH, Schweitzer R. Molecular regulation of tendon cell fate during development. J Orthop Res. 2015;33:800–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development. 2010;137:2807–17.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84:649–98.CrossRefPubMedGoogle Scholar
  16. 16.
    Schwartz AG, Lipner JH, Pasteris JD, Genin GM, Thomopoulos S. Muscle loading is necessary for the formation of a functional tendon enthesis. Bone. 2013;55:44–51.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Snow CJ, Henry CA. Dynamic formation of microenvironments at the myotendinous junction correlates with muscle fiber morphogenesis in zebrafish. Gene Expr Patterns. 2009;9:37–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang JH-C, Guo Q, Li B. Tendon biomechanics and mechanobiology – a minireview of basic concepts and recent advancements. J Hand Ther. 2012;25:133–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, et al. Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol. 2013;32:3–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Wall ME, Banes AJ. Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 2005;5:70–84.PubMedGoogle Scholar
  21. 21.
    Zhang J, Wang JHC. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2010;28:639–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Popov C, Burggraf M, Kreja L, Ignatius A, Schieker M, Docheva D. Mechanical stimulation of human tendon stem/progenitor cells results in upregulation of matrix proteins, integrins and MMPs, and activation of p38 and ERK1/2 kinases. BMC Mol Biol. 2015;16:1219. Scholar
  23. 23.
    Choi WJ, Park MS, Park KH, Courneya J-P, Cho JS, Schon LC, Lee JW. Comparative analysis of gene expression in normal and degenerative human tendon cells: effects of cyclic strain. Foot Ankle Int. 2014;35:1045–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Lucien M. Note sur le developpement des coulisses fibreuses et les gaines sinoviales annexées aux péroniers láteraux. Comptes Rendus Assoc Anat. 1908:148.Google Scholar
  25. 25.
    Tozer S, Duprez D. Tendon and ligament: development, repair and disease. Birth Defects Res C Embryo Today. 2005;75:226–36.CrossRefPubMedGoogle Scholar
  26. 26.
    Hauser RA, Dolan EE, Phillips HJ, Newlin AC, Moore RE, Woldin BA. Ligament injury and healing: a review of current clinical diagnostics and therapeutics. Open Rehabil J. 2013;6(1):5.Google Scholar
  27. 27.
    Beau A. Recherches sur le developpement et la constitution morphologiques de lárticulation du cou-du pied chez l’homme. Arch Anat Histol Embryol. 1939;26:205.Google Scholar
  28. 28.
    Lucien M. Notes dur le developpement du ligament annulaire anterieur du tarse. Comptes rendus Hebd. Soc Biol. 1908;2:253.Google Scholar
  29. 29.
    Kakebeke TH, von Siebenthal K, Largo RH. Movement quality in pre-term infants prior to term. Biol Neonate. 1998;73:145–54.CrossRefGoogle Scholar
  30. 30.
    Fricke O, Schoenau E. Examining the developing skeletal muscle: why, what and how? J Musculoskelet Neuronal Interact. 2005;5(3):225–31.PubMedGoogle Scholar
  31. 31.
    Chamley C, Carson P, Randall D, Sandwell M. Developmental anatomy and physiology of children: a practical approach. Edinburgh: Elsevier Churchill Livingston; 2005. p. 83–84. Accessed 5 July 2018.
  32. 32.
    Hydorn C, Cooper J. Pediatric orthopedics versus adult orthopedics. Orthostreams. 2014. Accessed 5 July 2018.
  33. 33.
    Coffey J. Pediatric XRay Diagnosis, vol. 2. 6th ed. Chicago: Year Book Medical Publishers; 1972. p. 884.Google Scholar
  34. 34.
    Pasturet G. Traité dÁnatomie Humaine, vol 2. Membres superieur et inferieur. Paris: Masson et Cie; 1951. p. 627–629.Google Scholar
  35. 35.
    Gruber HE, Lachman RS, Rimoin DL. Quantitative histology of cartilage vascular canals in the human rib: findings in normal neonates and children and in achondrogenesis II-hypochondrogenesis. J Anat. 1990;173:69–75.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wilsman NJ, Van Sickle DC. Cartilage canals, their morphology, and distribution. Anat Rec. 1972;173:79–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Thapa M, Iyer R, Khanna P, Chew F. MRI of pediatric patients: part 1, normal and abnormal cartilage. AJR Am J Roentgenol. 2012;198:W450–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Jaramillo D, Villegas-Medina OL, Doty DK, et al. Age-related vascular changes in the epiphysis, physis, and metaphysis: normal findings on gadolinium-enhanced MRI of piglets. AJR. 2004;182:353–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Kolb A, Robinson S, Stelzeneder D et al. Vessel architecture in human knee cartilage in children: an in vivo susceptibility-weighted imaging study at 7 T. Eur Radiol. 2017. Scholar
  40. 40.
    Martin DD, Wit JM, Hochberg Z, Sävendahl L, van Rijn RR, Fricke O, et al. The use of bone age in clinical practice – part 1. Horm Res Paediatr. 2011;76:1–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Mughal AM, Hassan N, Ahmed A. Bone age assessment methods: A critical review. Pak J Med Sci. 2014;30(1):211–5.Google Scholar
  42. 42.
    Blais MM, Green WR, Anderson M. Lengths of growing foot. J Bone Joints Surg Am. 1956;38:998.CrossRefGoogle Scholar
  43. 43.
    Hübner U, Schlicht W, Outzen S, Barthel M, Halsband H. Ultrasound in the diagnosis of fractures in children. J Bone Joint Surg (Br). 2000;82-B:1170–3.CrossRefGoogle Scholar
  44. 44.
    Filly RA, Golbus MS. Ultrasonography of the normal and pathologic fetal skeleton. Radiol Clin N Am. 1982;20:311–23.PubMedGoogle Scholar
  45. 45.
    Ghosh A, Woo JS, Wan CW, Wong VC. Simple ultrasonic diagnosis of osteogenesis imperfecta type II in early second trimester. Prenat Diagn. 1984;4:235–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Pearsall AW, Larkin JJ, Raasch W. Intrauterine femur fracture. Orthopedics. 1992;15:947–50.PubMedGoogle Scholar
  47. 47.
    Howard CB, Lieberman N, Mozes G, Nyska M. Stress fracture detected sonographically. AJR Am J Roentgenol. 1992;159:1350–1.CrossRefPubMedGoogle Scholar
  48. 48.
    Patten RM, Mack LA, Wang KY, Lingel J. Nondisplaced fractures of the greater tuberosity of the humerus: sonographic detection. Radiology. 1992;182:201–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Battistelli JM, Anselem B. Echography in injuries of costal cartilages. J Radiol. 1993;74:409–12.PubMedGoogle Scholar
  50. 50.
    Bitschnau R, Gehmacher O, Kopf A, Scheier M, Mathis G. Ultrasound diagnosis of rib and sternum fractures. Ultraschall Med. 1997;18:158–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Mariacher-Gehler S, Michel BA. Sonography: a simple way to visualize rib fractures. AJR Am J Roentgenol. 1994;163:1268.CrossRefPubMedGoogle Scholar
  52. 52.
    Martino F, Laforgia R, Rizzo A, et al. The echographic assessment of traumatic rib lesions. Radiol Med. 1997;94:166–9.PubMedGoogle Scholar
  53. 53.
    Smeets AJ, Robben SG, Meradji M. Sonographically detected costochondral dislocation in an abused child: a new sonographic sign to the radiological spectrum of child abuse. Pediatr Radiol. 1990;20:566–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Leitgeb N, Bodenteich A, Schweighofer F, Fellinger M. Ultrasonic diagnosis of fractures. Ultraschall Med. 1990;11:206–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Xu H, Shao H, Wang L, Jin J, Wang J. A methodological comparison between ultrasound and X-ray evaluations of bone age. J Sports Sci. 2008;6:27.Google Scholar
  56. 56.
    Malattia C, Damasio MB, Magnaguagno F, Pistorio A, Valle M, Martinoli C, Viola S, Buoncompagni A, Loy A, Ravelli A, Tomà P, Martini A. Magnetic resonance imaging, ultrasonography, and conventional radiography in the assessment of bone erosions in juvenile idiopathic arthritis. Arthritis Rheum. 2008;59:1764–72.CrossRefPubMedGoogle Scholar
  57. 57.
    Wakefield RJ, O’Connor PJ, Conaghan PG, McGonagle D, Hensor EM, Gibbon WW, Brown C, Emery P. Finger tendon disease in untreated early rheumatoid arthritis: a comparison of ultrasound and magnetic resonance imaging. Arthritis Rheum. 2007;57:1158–64.CrossRefPubMedGoogle Scholar
  58. 58.
    Funck-Brentano T, Etchepare F, Joulin SJ, et al. Benefits of ultrasonography in the management of early arthritis: a crosssectional study of baseline data from the ESPOIR cohort. Rheumatology (Oxford). 2009;48:1515–9.CrossRefGoogle Scholar
  59. 59.
    Scheel AK, Hermann KG, Ohrndorf S, et al. Prospective 7 year follow up imaging study comparing radiography, ultrasonography, and magnetic resonance imaging in rheumatoid arthritis finger joints. Ann Rheum Dis. 2006;65:595–600.CrossRefPubMedGoogle Scholar
  60. 60.
    Szkudlarek M, Narvestad E, Klarlund M, et al. Ultrasonography of the metatarsophalangeal joints in rheumatoid arthritis comparison with magnetic resonance imaging, conventional radiography, and clinical examination. Arthritis Rheum. 2004;50:2103–12.CrossRefGoogle Scholar
  61. 61.
  62. 62.
    Mentzel H-J, Vilser C, Eulenstein M, Schwartz T, Vogt S, Bottcher J, et al. Assessment of skeletal age at the wrist in children with a new ultrasound device. Pediatr Radiol. 2005;35(4):429–33. [PubMed].CrossRefPubMedGoogle Scholar
  63. 63.
    Zadik Z, Bistrizer T, Tsoref L, Schwartz T, Yaniv I. A novel method for assessing bone age using ultrasound. Prague: Europediatrics; [cited 2012 Oct 19]. Available from:
  64. 64.
    Shimura N, Koyama S, Arisaka O, Imataka M, Sato K, Matsuura M. Assessment of measurement of children’s bone age ultrasonically with sunlight BonAge. Clin Pediatr Endocrinol. 2005;14(Suppl 24):17–20.Google Scholar
  65. 65.
    Khan KM, Miller BS, Hoggard E, Somani A, Sarafoglou K. Application of ultrasound for bone age estimation in clinical practice. J Pediatr. 2009;154(2):243–7. Scholar
  66. 66.
    Damasio MB, Malattia C, Martini A, Tomà P. Synovial and inflammatory diseases in childhood: role of new imaging modalities in the assessment of patients with juvenile idiopathic arthritis. Pediatr Radiol. 2010;40:985–98. Scholar
  67. 67.
    Spannow AH, Stenboeg E, Pfeiffer-Jensen M, Herlin T. Ultrasound measurement of joint cartilage thickness in large and small joints in healthy children: a clinical pilot study assessing observer variability. Pediatr Rheumatol Online J. 2007;2:5–3.Google Scholar
  68. 68.
    Möller B, Bonel H, Rotzetter M, Villiger PM, Ziswiler HR. Measuring finger joint cartilage by ultrasound as a promising alternative to conventional radiograph imaging. Arthritis Rheum. 2009;61:435–41. Scholar
  69. 69.
    Shahin AA, el-Mofty SA, el-Sheikh EA, Hafez HA, Ragab OM. Power Doppler sonography in the evaluation and follow-up of knee involvement in patients with juvenile idiopathic arthritis. Z Rheumatol. 2001;60:148–55.CrossRefPubMedGoogle Scholar
  70. 70.
    Buchmann RF, Jaramillo D. Imaging of articular disorders in children. Radiol Clin N Am. 2004;42:151–68.CrossRefPubMedGoogle Scholar
  71. 71.
    Tok F, Demirkaya E, Özçakar L. Musculoskeletal ultrasound in pediatric rheumatology. Pediatr Rheumatol Online J. 2011;9:25.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kane D, Grassi W, Sturrock R, Balint PV. Musculoskeletal ultrasound--a state of the art review in rheumatology. Part 2: clinical indications for musculoskeletal ultrasound in rheumatology. Rheumatology (Oxford). 2004;43:829–38.CrossRefGoogle Scholar
  73. 73.
    Grassi W. Clinical evaluation versus ultrasonography: who is the winner? [editorial]. J Rheumatol. 2003;30:908–9.PubMedGoogle Scholar
  74. 74.
    Karim Z, Wakefield RJ, Conaghan PG, Lawson CA, Goh E, Quinn MA, et al. The impact of ultrasonography on diagnosis and management of patients with musculoskeletal conditions. Arthritis Rheum. 2001;44:2932–3.CrossRefPubMedGoogle Scholar
  75. 75.
    Roth J, Jousse-Joulin S, Magni-Manzoni S, Rodriguez A, Tzaribachev N, Iagnocco A, et al. Definitions for the sonographic features of joints in healthy children. Arthritis Care Res. 2015;67:136–42.CrossRefGoogle Scholar
  76. 76.
    Roth J, Ravagnani V, Backhaus M, Balint P, Alessandra Bruns GA, Bruyn PC, De La Cruz L, Guillaume-czitrom S, Herlin T, Hernandez C, et al. Preliminary Definitions for the Sonographic Features of Synovitis in Children. Arthritis Care Res. 2017;69(8):1217–23.CrossRefGoogle Scholar
  77. 77.
    Naredo E, Bonilla G, Gamero F, Uson J, Carmona L, Laffon A. Assessment of inflammatory activity in rheumatoid arthritis: a comparative study of clinical evaluation with grey scale and power Doppler ultrasonography. Ann Rheum Dis. 2005;64:375–81.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Karmazyn B, Bowyer SL, Schmidt KM, Ballinger SH, Buckwalter K, Beam TT, Ying J. US findings of metacarpophalangeal joints in children with idiopathic juvenile arthritis. Pediatr Radiol. 2007;37:475–82.CrossRefPubMedGoogle Scholar
  79. 79.
    Szkudlarek M, Court-Payen M, Strandberg C, Klarlund M, Klausen T, Ostergaard M. Power Doppler ultrasonography for assessment of synovitis in the metacarpophalangeal joints of patients with rheumatoid arthritis: a comparison with dynamic magnetic resonance imaging. Arthritis Rheum. 2001;44:2018–23.CrossRefPubMedGoogle Scholar
  80. 80.
    Walther M, Harms H, Krenn V, Radke S, Faehndrich TP, Gohlke F. Correlation of power Doppler sonography with vascularity of the synovial tissue of the knee joint in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 2001;44:331–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Lamer S, Sebag GH. MRI and ultrasound in children with juvenile chronic arthritis. Eur J Radiol. 2000;33:85–93.CrossRefPubMedGoogle Scholar
  82. 82.
    Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett. 2005;579:3487–92.CrossRefPubMedGoogle Scholar
  83. 83.
    Šenolt L. Adipokines: role in local and systemic inflammation of rheumatic diseases. Expert Rev Clin Immunol. 2017;13(1):1–3.CrossRefPubMedGoogle Scholar
  84. 84.
    Collado P, Vojinovic J, Nieto JC, Windschall D, Magni-Manzoni S, Bruyn GAW, et al. Toward standardized musculoskeletal ultrasound in pediatric rheumatology: normal age-related ultrasound findings. Arthritis Care Res. 2016;68:348–56.CrossRefGoogle Scholar
  85. 85.
    Collado P, Windschall D, Vojinovic J, et al. Amendment of the OMERACT ultrasound definitions of joints’ features in healthy children when using the DOPPLER technique. Pediatr Rheumatol Online J. 2018;16:23.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr. 1982;101:656–60.CrossRefPubMedGoogle Scholar
  87. 87.
    Heckmatt JZ, Pier N, Dubowitz V. Assessment of quadriceps femoris muscle atrophy and hypertrophy in neuromuscular disease in children. J Clin Ultrasound. 1988;16:177–81.CrossRefPubMedGoogle Scholar
  88. 88.
    Heckmatt JZ, Pier N, Dubowitz V. Measurement of quadriceps muscle thickness and subcutaneaous tissue thickness in normal children by real-time ultrasound imaging. J Clin Ultrasound. 1988;16:171–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Lamminen A, Jääskeläinen J, Rapola J, Suramo I. High-frequency ultrasonography of skeletal muscle in children with neuromuscular disease. J Ultrasound Med. 1988;7:505–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Reimers CD, Kellner H. Muscle ultrasound. In: Fleckenstein JL, Crues JV, Reimers CD, editors. Muscle imaging in health and disease. New York: Springer; 1996. p. 13–20.CrossRefGoogle Scholar
  91. 91.
    Heckmatt JZ, Dubowitz V. Diagnostic advantage of needle muscle biopsy and ultrasound imaging in the detection of focal pathology in a girl with limb girdle dystrophy. Muscle Nerve. 1985;8:705–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Schmidt R, Voit T. Ultrasound measurement of quadriceps muscle in the first year of life. Neuropediatrics. 1992;24:36–42.CrossRefGoogle Scholar
  93. 93.
    Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet. 1980;1:1389–90.CrossRefPubMedGoogle Scholar
  94. 94.
    Zuberi SM, Matta N, Nawaz S, Stephenson JBP, McWilliam RC, Hollman A. Muscle ultrasound in the assessment of suspected neuromuscular disease in childhood. Neuromuscul Disord. 1999;9:203–7.CrossRefPubMedGoogle Scholar
  95. 95.
    SCHOLTEN RR, PILLEN S, VERRIPS A, ZWARTS MJ. Quantitative ultrasonography of skeletal muscles in children: Normal values. Muscle Nerve. 2003;27:693–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Collado P, Windschall D, Vojinovic J, Magni-Manzoni S, Balint P, Bruyn GAW, Hernandez-Diaz C, Nieto JC, Ravagnani V, Tzaribachev N, Iagnocco A, D’Agostino MA, Naredo E. Amendment of the OMERACT ultrasound definitions of joints’ features in healthy children when using the DOPPLER. Pediatr Rheumatol Online J. 2018;16:23–30.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Floyd WE, Zaleske DJ, Schiller AL, Trahan C, Mankin HJ. Vascular events associated with the appearance of the secondary center of ossification in the murine distal femoral epiphysis. J Bone Joint Surg Am. 1987;69:185–90.CrossRefPubMedGoogle Scholar
  98. 98.
    Bearcroft P, Berman L, Robinson A, Butler G. Vascularity of the neonatal femoral head: in vivo demonstration with power Doppler US. Radiology. 1996;200:209–11. [PubMed] [Cross Ref].CrossRefPubMedGoogle Scholar
  99. 99.
    Shapiro F. Epiphyseal and Physeal cartilage vascularization: a light microscopic and Tritiated thymidine autoradiographic study of cartilage canals in newborn and young postnatal rabbit bone. Anat Rec. 1998;252:140–8.<140::AID-AR12>3.0.CO;2-O.CrossRefPubMedGoogle Scholar
  100. 100.
    Varich LJ, Laor T, Jaramillo D. Normal maturation of the distal femoralepiphyseal cartilage: age-related changes at MR imaging. Radiology. 2000;214:705–9. Scholar
  101. 101.
    Windschall D, Collado P, Vojinovic J, Magni-Manzoni S, Balint P, Bruyn G, Hernandez-Diaz C, Carlos Nieto J, Ravagnani V, Tzaribachev N, Iagnocco A, D’Agostino MA, Naredo E. On behalf of the OMERACT paediatric ultrasound subtask force. Age-related vascularization and ossification of joints in children: an international pilot study to test multi-observer ultrasound reliability. Arthritis Care Res (Hoboken). 2017;
  102. 102.
    Vojinovic J, Magni-Manzoni S, Collado P, Windschall D, Ravagnani V, Hernandez-Diaz C, Nieto Gonzales JC, Malattia C, Tzaribachev N, Susic G, Damjanov N, Czitrom SG, Herlin T, Lanni S, et al. Ultrasonography definitions for synovitis grading in children: the omeract pediatric ultrasound task force. Ann Rheum Dis. 2017;76:1015.Google Scholar
  103. 103.
    Ho-Fung VM, Jaramillo D. Cartilage imaging in children: current indications, magnetic resonance imaging techniques, and imaging findings. Radiol Clin N Am. 2013;51:689–702.CrossRefPubMedGoogle Scholar
  104. 104.
    Walker F. Future directions in neuromuscular ultrasound, Chapter 13. In: Walker F, Cartwright M, editors. Neuromuscular ultrasound. Philadelphia: Elsevier; 2011. p. 177–86.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yasser El Miedany
    • 1
    • 2
  • Ingrid Möller
    • 3
    • 4
  • Maribel Miguel-Pérez
    • 3
  1. 1.Medway Foundation TrustKing’s College LondonLondonUK
  2. 2.Rheumatology and RehabilitationAin Shams UniversityCairoEgypt
  3. 3.Unit of Human Anatomy and Embryology, Department of Experimental Pathology and Therapeutic, Faculty of Medicine and Health Sciences (C.Bellvitge)University of BarcelonaBarcelonaSpain
  4. 4.Instituto Poal de ReumatologiaBarcelonaSpain

Personalised recommendations