Advertisement

The Effect of Mechanochemical and Ultrasonic Treatments on the Properties of Composition CeO2–MoO3 = 1:1

  • V. A. Zazhigalov
  • O. A. Diyuk
  • O. V. Sachuk
  • N. V. Diyuk
  • V. L. Starchevsky
  • Z. Sawlowicz
  • I. V. Bacherikova
  • S. M. Shcherbakov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

The influence of mechanochemical (MChT) and ultrasonic (UST) treatment on the properties of CeO2–MoO3 = 1:1 composition was studied. It was shown that in both processes changes in crystalline, porous structures, and morphology occurred. It was found that MChT and UST of samples affect the characteristics of hydrogen temperature-programmed reduction (H2-TPR). The results of the catalytic activity of activated samples in an ethanol oxidation reaction demonstrate the high yield of acetic aldehyde (95%) at 230 °C and the productivity of this product (0.9 mol/kgcat · h).

Notes

Acknowledgments

This work was financially supported by the NASU Programs: Fundamental Research “New Functional Substances and Materials for Chemical Engineering” (project 7–17/18) and the Program for Young Scientists (project 41: “Synthesis of new nanodispersed photocatalysts of environmental protection processes”).

References

  1. 1.
    Jin Y, Li N, Liu H, Hua X, Zhang Q, Chen M, Teng F (2014) Highly efficient degradation of dye pollutants by Ce-doped MoO3 catalyst at room temperature. Dalton Trans 43(34):12860–12870CrossRefGoogle Scholar
  2. 2.
    Zhao S, Li J, Wang L, Wang X (2010) Degradation of rhodamine B and safranin-T by MoO3:CeO2 nanofibers and air using a continuous mode. Clean (Weinh) 38(3):268–274Google Scholar
  3. 3.
    Sobhani-Nasab A, Maddahfar M, Hosseinpour-Mashkan SM (2016) Ce(MoO4)2 nanostructures: synthesis, characterization, and its photocatalyst application through the ultrasonic method. J Mol Liq 216:1–5CrossRefGoogle Scholar
  4. 4.
    Mohamed MM, Katib SMA (2005) Structural and catalytic characteristics of MoO3/CeO2 catalysts: CO oxidation activity. Appl Catal A Gen 287(2):236–243CrossRefGoogle Scholar
  5. 5.
    Chang H, Jong MT, Wang C, Qu R, Du Y, Li J, Hao J (2013) Design strategies for P-containing fuels adaptable CeO2−MoO3 catalysts for DeNOx: significance of phosphorus resistance and N2 selectivity. Environ Sci Technol 47(20):11692–11699ADSCrossRefGoogle Scholar
  6. 6.
    Zhu J, Gao F, Dong L, Yu W, Qi L, Wang Z, Dong L, Chen Y (2010) Studies on surface structure of MxOy/MoO3/CeO2 system (M = Ni, Cu, Fe) and its influence on SCR of NO by NH3. Appl Catal B Environ 95(1–2):144–152CrossRefGoogle Scholar
  7. 7.
    Peng Y, Qu R, Zhang X, Li J (2013) The relationship between structure and activity of MoO3–CeO2 catalysts for NO removal: influences of acidity and reducibility. Chem Commun 49:6215–6217CrossRefGoogle Scholar
  8. 8.
    Nasser H, Rédey Á, Yuzhakova T, Kovács J (2009) Thermal stability and surface structure of Mo/CeO2 and Ce-doped Mo/Al2O3 catalysts. J Therm Anal Calorim 95(1):69–74CrossRefGoogle Scholar
  9. 9.
    Matsuoka Y, Niwa M, Murakami Y (1990) Morphology of molybdena supported on various oxides and its activity for methanol oxidation. J Phys Chem 94:1477–1482CrossRefGoogle Scholar
  10. 10.
    Rao BG, Sudarsanam P, Rangaswamy A, Reddy BM (2015) Highly efficient CeO2–MoO3/SiO2 catalyst for solvent-free oxidative coupling of benzylamines into N-benzylbenzaldimines with O2 as the oxidant. Catal Lett 145(7):1436–1445CrossRefGoogle Scholar
  11. 11.
    Chatel. G (2018) How sonochemistry contributes to green chemistry? Ultrasonics Chem Part B 40:117–122Google Scholar
  12. 12.
    Quaresma S, André V, Fernandes A, Duarte MT (2017) Mechanochemistry – a green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorganica Chimia Acta, Part 2 455:309–318CrossRefGoogle Scholar
  13. 13.
    Buyanov RA, Molchanov VV (1996) Application of the method of mechanochemical activation in low-waste energy-saving technologies for the production of catalysts and carriers. J. Chemical Industry 3:152–157Google Scholar
  14. 14.
    Bang BJH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059CrossRefGoogle Scholar
  15. 15.
    Mason TJ, Lorimer J (2003) Applied sonochemistry: uses of power ultrasound in chemistry and processing. Wiley, Weinheim, p 303Google Scholar
  16. 16.
    Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin, p 412Google Scholar
  17. 17.
    Boldyrev VV et al (2009) Fundamental principles of mechanical activation of mechanosynthesis and mechanochemical technologies. Publish.Hous SORAN, Novosibirsk, p 343Google Scholar
  18. 18.
    Zazhigalov VA, Sachuk OV, Diyuk OA, Starchevskyy VL, Kolotilov SV, Sawlowicz Z, Shcherbakov SM, Zakutevskyy OI (2018) The ultrasonic treatment as a promising method of nanosized oxide CeO2-MoO3 composites preparation. In: Fesenko O, Yatsenko L (eds) Nanochemistry, biotechnology, nanomaterials, and their applications, and their applications, Springer Proceedings in Physics 214. Springer International Publishing AG, part of Springer Nature, Cham, pp 297–308CrossRefGoogle Scholar
  19. 19.
    Zazhigalov VA, Wieczorek-Ciurowa K, Sachuk OV, Diyuk EA, Bacherikova IV (2018) Mechanochemical synthesis of nanodispersed molybdenum oxide catalysts. Theor Exp Chem 54(4):225–234CrossRefGoogle Scholar
  20. 20.
    Fierro J, Sanz JSJ, Rojo J (1987) Induced changes in Ceria by thermal treatments under vacuum or hydrogen. J Solid State Chem 66:154–162ADSCrossRefGoogle Scholar
  21. 21.
    Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley JC, El Fallah J, Hilaire L, Le Normand F, Quéméré E, Sauvion GN, Touret O (1991) Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J Chem Soc Faraday Trans 87(10):1601–1609CrossRefGoogle Scholar
  22. 22.
    Marrero-Jerez J, Chinarro E, Peña-Martínez J, Núñez P (2015) CGO20–CuO composites synthesized by the combustion method and characterized by H2-TPR. Ceram Int 41(9):10904–10909CrossRefGoogle Scholar
  23. 23.
    Goswami R, Herman H, Sampath S, Jiang X (2001) Plasma sprayed Mo-Mo oxide nanocomposites: synthesis and characterization. Surf Coat Technol 141(2):220–226CrossRefGoogle Scholar
  24. 24.
    Boudlich D, Haddad M, Nadiri A, Berger R, Kliava J (1998) Mo5+ ions as EPR structural probes in molybdenum phosphate glasses. J Non-Cryst Solids 224:135–142ADSCrossRefGoogle Scholar
  25. 25.
    Dyrek K, Łabanowska M (1991) Electron paramagnetic resonance investigation of the paramagnetic centres in polycrystalline MoO3. J Chem Soc Faraday Trans 87(7):1003–1009CrossRefGoogle Scholar
  26. 26.
    Il’ichev AN, Kuli-zade AM, Korchak VN (2005) ESR study of the formation of radical anions on oxidized CeO2 and CeO2/ZrO2 adsorbing a CO + O2 mixture O-2. Kinet Catal 46(3):396–402CrossRefGoogle Scholar
  27. 27.
    Jørgensen B, Christiansen SE, Thomsen MLD, Christensen CH (2007) Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: efficient routes to acetic acid and ethyl acetate. J Catal 251:332–337CrossRefGoogle Scholar
  28. 28.
    Takei T, Iguchi N, Haruta M (2011) Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Jpn 15(2):80–88CrossRefGoogle Scholar
  29. 29.
    Yoshitake H, Aoki Y, Hemmi S (2006) Mesoporous titania supported-molybdenum catalyst: the formation of a new mesophase and use in ethanol-oxygen catalytic reactions. Microporous Mesoporous Mater 93(1–3):294–303CrossRefGoogle Scholar
  30. 30.
    Beck B, Harth M, Hamilton NG, Carrero C, Uhlrich JJ, Trunschke A, Shaikhutdinov S, Schubert H, Freund H-J, Schlögl R, Sauer J, Schomäcker R (2012) Partial oxidation of ethanol on vanadia catalysts on supporting oxides with different redox properties compared to propane. J Catal 296:120–131CrossRefGoogle Scholar
  31. 31.
    Kim D-W, Kim H, Jung Y-S, Song IK, Baeck S-H (2008) Synthesis of tungsten–vanadium mixed oxides for ethanol partial oxidation. J Phys Chem Solids 69:1513–1517ADSCrossRefGoogle Scholar
  32. 32.
    Tesser R, Maradei V, Di Serio M, Santacesaria E (2004) Kinetics of the oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2-SiO2 catalysts prepared by grafting. Eng Chem Res 43:1623–1633CrossRefGoogle Scholar
  33. 33.
    Quaranta NE, Soria J, Corberan VC, Fierro JLG (1997) Selective oxidation of ethanol to acetaldehyde on V2O5/TiO2/SiO2 catalysts effect of TiO2-coating of the silica. Support J Catal 171:1–13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. A. Zazhigalov
    • 1
  • O. A. Diyuk
    • 1
  • O. V. Sachuk
    • 1
  • N. V. Diyuk
    • 2
  • V. L. Starchevsky
    • 3
  • Z. Sawlowicz
    • 4
  • I. V. Bacherikova
    • 1
  • S. M. Shcherbakov
    • 5
  1. 1.Institute for Sorption and Problems of Endoecology, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Taras Shevchenko National University of KyivKyivUkraine
  3. 3.National University «Lviv Polytechnic»LvivUkraine
  4. 4.Institute of Geology, Jagiellonian UniversityKrakowPoland
  5. 5.M.G. Kholodny Institute of Botany of the National Academy of Science of UkraineKyivUkraine

Personalised recommendations