Electrooxidation of Ethanol on Nickel-Copper Multilayer Metal Hydroxide Electrode

  • Antonina A. Maizelis
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)


Nickel-copper multilayer metal hydroxide electrode was obtained by multilayer coating electrodeposition on copper substrate in polyligand pyrophosphate-ammonia electrolyte by two-pulse potentiostatic method. The alternating layers are Ni-Cu alloy layers of 110–430 nm thickness deposited at a potential of − 1.175 V and the layers of mixture of copper and nickel with their hydroxides of 40–260 nm thickness deposited at a potential of − 1.35 V. Cyclic voltammetry was used to show that the surface coverage of Ni(OH)2/NiOOH redox species of electrode with multilayer coating (4.80 × 10−6 mol cm−2) is higher as compared to electrode with Ni-Cu alloy coating (3.66 × 10−6 mol cm−2) and it is about one order of magnitude higher as compared to the electrode with porous nickel coating. The multilayer electrode shows the catalytic activity toward the ethanol oxidation reaction in alkaline medium. The ratio of the current of ethanol oxidation peak to the current of anodic peak in alkaline solution without ethanol on electrode with multilayer coating is 1.22 times higher as compared to the electrode with alloy coating.


Ni-Cu Alloy Multilayer coating Electrodeposition Ethanol Electrocatalytic oxidation Fuel cell 


  1. 1.
    Ong BC, Kamarudin SK, Basri S (2017) Direct liquid fuel cells: a review. Int J Hydrog Energy 42:10142–10157. CrossRefGoogle Scholar
  2. 2.
    Bezghiche-Imloul T, Hammache-Makhloufi H, Aitahmed N (2016) Electrocatalytic oxidation of alcohols on Cu2O/Cu thin film electrodeposited on titanium substrate. Surf Rev Lett 23(5):1650041. ADSCrossRefGoogle Scholar
  3. 3.
    Barbosa AFB, Oliveira VL, van Drunen J, Tremiliosi-Filho G (2015) Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: temperature influence and reaction mechanism. J Electroanal Chem 746:31–38. CrossRefGoogle Scholar
  4. 4.
    Ehsani A, Mahjani MG, Jafarian M, Naeemy A (2012) Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol. Electrochim Acta 71:128–133. CrossRefGoogle Scholar
  5. 5.
    Zhang J, Li Q, Zhang J, Fan Y (2016) Advanced anode catalysts for direct alcohol fuel cells. In: Wang Y (ed) Nanomaterials for direct alcohol fuel cell. Pan Stanford Publishing, Singapore, pp 15–76Google Scholar
  6. 6.
    Zhang SJ, Zheng YX, Yuan LS, Zhao LH (2013) Ni-B amorphous alloy nanoparticles modified nanoporous Cu toward ethanol oxidation in alkaline medium. J Power Sources 247:28–436. Google Scholar
  7. 7.
    Nikiforova TG, Stepanova AA, Datskevich OA, Maleev VV (2013) Porous nickel deposits formed in the oxidation of alcohols in an alkaline medium. Rus J Appl Chem 86(11):1713–1718. CrossRefGoogle Scholar
  8. 8.
    Hassan HB, Hamid ZA (2011) Electrodeposited Ni-Cr2O3 nanocomposite anodes for ethanol electrooxidation. Int J Hydrog Energy 36(8):5117–5127. CrossRefGoogle Scholar
  9. 9.
    Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources 187(2):387–392. CrossRefGoogle Scholar
  10. 10.
    Kim JW, Park SM (2005) Electrochemical oxidation of ethanol at nickel hydroxide electrodes in alkaline media studied by electrochemical impedance spectroscopy. J Korean Electrochem Soc 8(3):117–124. CrossRefGoogle Scholar
  11. 11.
    Kim JW, Park SM (2003) In situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol. J Electrochem Soc 150(11):E560–E566. CrossRefGoogle Scholar
  12. 12.
    Sincheskul A, Pancheva H, Loboichenko V, Avina S, Khrystych O, Pilipenko A (2017) Design of the modified oxide-nickel electrode with improved electrical characteristics. East Eur J Enterp Technol 5(6):23–28Google Scholar
  13. 13.
    Heli H, Jafarian M, Mahjani MG, Goba F (2004) Electro-oxidation of methanol on copper in alkaline solution. Electrochim Acta 49:4999–5006. CrossRefGoogle Scholar
  14. 14.
    Yuan LS, Zheng YX, Jia ML, Zhang SJ, Wang XL, Peng C (2015) Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium. Electrochim Acta 154:54–62. CrossRefGoogle Scholar
  15. 15.
    Sen Gupta S, Mahapatra SS, Datta J (2004) A potential anode material for the direct alcohol fuel cell. J Power Sources 131:169–174. CrossRefGoogle Scholar
  16. 16.
    Antolinia E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450. CrossRefGoogle Scholar
  17. 17.
    Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrog Energy 33:4367–4376. CrossRefGoogle Scholar
  18. 18.
    Jafarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium. J Appl Electrochem 36(8):913–918. CrossRefGoogle Scholar
  19. 19.
    Jin GP, Ding YF, Zheng PP (2007) Electrodeposition of nickel nanoparticles on functional MWCNT surfaces for ethanol oxidation. J Power Sources 166(1):80–86. CrossRefGoogle Scholar
  20. 20.
    Zhang S, Zheng Y, Yuan L, Wang X, Zhao L (2014) In situ synthesis of nickel-boron amorphous alloy nanoparticles electrode on nanoporous copper film/brass plate for ethanol electro-oxidation. Int J Hydrog Energy 39(7):3100–3108. CrossRefGoogle Scholar
  21. 21.
    Maizelis AA, Tul’skii GG, Bairachnyi VB, Trubnikova LV (2017) The effect of ligands on contact exchange in the NdFeB-Cu2+-P2O\(_{7}^{4-}\)-NH\(_{4}^{+}\) system. Russ J Electrochem 53(4):417–423. CrossRefGoogle Scholar
  22. 22.
    Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem Interfacial Electrochem 159(2):267–285. CrossRefGoogle Scholar
  23. 23.
    Maizelis AA, Bairachniy BI, Trubnikova LV, Savitsky BA (2012) The effect of architecture of the Cu/(Ni-Cu) multilayer coatings on their microhardness. Funct Mater 19(2):238–244Google Scholar
  24. 24.
    Maizelis AA, Bairachniy BA (2017) Copper nucleation on nickel from pyrophosphate-based polyligand electrolyte. In: International conference on nanotechnology and nanomaterials. Springer, Cham, pp 443–457. Google Scholar
  25. 25.
    Maizelis A, Bairachniy B (2016) Electrochemical formation of multilayer metal and metal oxide coatings in complex electrolytes. In: International conference on nanotechnology and nanomaterials. Springer, Cham, pp 557–572. Google Scholar
  26. 26.
    Gira MJ, Tkacz KP, Hampton JR (2016) Physical and electrochemical area determination of electrodeposited Ni, Co, and NiCo thin films. Nano Convergence 3(1):6. CrossRefGoogle Scholar
  27. 27.
    Maizelis A, Bairachny B (2017) Voltammetric analysis of phase composition of Zn-Ni alloy thin films electrodeposited from weak alkaline polyligand electrolyte. J Nano-Electron Phys 9(5):1–7. CrossRefGoogle Scholar
  28. 28.
    Maizelis A (2017) Voltammetric analysis of phase composition of Zn-Ni alloy thin films electrodeposited under different electrolyze modes. In: IEEE 7th international conference on nanomaterials: applications and properties 02NTF13. IEEE.
  29. 29.
    Bard AJ, Faulkner LR (2005) Electrochemical methods, fundamentals and applications. Chemical Industry Press, Beijing, p 409Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonina A. Maizelis
    • 1
  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations