Electron Irradiation of Carbon Nanotubes

  • H. Yu. Mykhailova
  • M. M. Nischenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)


Recently, the production of effective thermoelectric materials has been associated with nanostructures. It is based on the use of physical effects that were found in nanostructures, such as size quantization, charge carrier tunneling, phonon scattering on nanostructure surfaces, which is necessary to increase the thermoelectric figure of merit (ZT) of thermal to electrical energy converters. The possibility of increasing ZT in superlattices was theoretically shown for the first time in Hicks and Dresselhaus [1]. The possibility of developing effective thermoelectric materials on the basis of nanostructures is predicted in Shevelkov et al., Dmitriev and Zvyagin, and Vineis et al. [2–4]. The approach based on the creation of bulk nanostructured thermoelectric materials is very perspective [5]. Theoretical calculations were performed in Eletsky and Bulat and Millet-Severin [6, 7], demonstrating the possibility of increasing ZT due to electron tunneling through the gap between nanoparticles, in addition to the occurrence of conditions under which the phonon mean free path is limited by the size of structural units or the gap between particles. In Shevelkov [2], the increase in ZT values is attributed to the effective dispersion of phonons at numerous grain interfaces in nanomaterials, leading to a stronger decrease in lattice thermal conductivity, compared with a decrease in electrical conductivity, which is necessary to increase the σ/λ ratio [8–10].


  1. 1.
    Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):727–731CrossRefGoogle Scholar
  2. 2.
    Шевельков АВ (2008) Химические аспеты создания термоэлектрических материалов. Успехи химии 77(1):3–21Google Scholar
  3. 3.
    Дмитриев АВ, Звягин ИП (2010) Современные тенденции развития физики термоэлектрических материалов. УФН 180(8):821–838Google Scholar
  4. 4.
    Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectric: big efficiency gains from small features. Adv Mater 22:3970–3980CrossRefGoogle Scholar
  5. 5.
    Снарский АА, Сарычев АК, Безсуднов ИВ, Лагарьков АН (2012) Термоэлектри-ческая добротность объёмных наноструктурированных композитов с распределёнными параметрами. Физика и техника полупроводников 46(5):677–683Google Scholar
  6. 6.
    Елецкий АВ (2002) Углеродные нанотрубки и их эмиссионные свойства. УФН 172(4):401–438CrossRefGoogle Scholar
  7. 7.
    Булат ЛП, Пшенай-Северин ДА (2010) Влияние туннелирования на термоэлектричекую эффективность объёмных наноструктурированных материалов. ФТТ 52(3):452–458Google Scholar
  8. 8.
    Булат ЛП, Бочковa ЛВ, Нефедовaa ИА, Ахыска Р (2014) НАНОСТРУКТУРИРОВАНИЕ КАК СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ТЕРМОЭЛЕКТРИКОВ. Научно-технический вестник информационных технологий, механики и оптики (4):48–56Google Scholar
  9. 9.
    Kajiura H, Nandyala A, Bezryadin A (2005) Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes. Carbon 43:1317–1339CrossRefGoogle Scholar
  10. 10.
    Азаренко НА, Береснев ВМ, Погребняк АД. Наноматериалы, нанопокрытия, нанотехнологии: Учебное пособие. Харьков: ХНУ им. В.Н. Каразина. – 2009. – 209cGoogle Scholar
  11. 11.
    Charlier JC (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53(16):11108–11113ADSCrossRefGoogle Scholar
  12. 12.
    Нищенко ММ (2003) Збірник наукових праць: “Наносистеми, наноматеріали, нанотехнології”. Академперіодика 1(1):193–259Google Scholar
  13. 13.
    Нищенко ММ (2004) Збірник наукових праць: “Наносистеми, наноматеріали, нанотехнології”. Академперіодика 2(3):983–991Google Scholar
  14. 14.
    Анатычук ЛИ (1979) Термоэлементы и термоэлектрические устройства. К.: Наук. Думка. p 228Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. Yu. Mykhailova
    • 1
  • M. M. Nischenko
    • 1
  1. 1.G. V. Kurdyumov Institute for Metal Physics of the NAS of UkraineKievUkraine

Personalised recommendations