The Perspective Synthesis Methods and Research of Nickel Ferrites

  • Iryna Ivanenko
  • Serhii Lesik
  • Ihor Astrelin
  • Yurii Fedenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)


This chapter presents an overview of synthesis methods and research of nickel ferrites. It reviews the schematic structure and model of ferrites structure. The chapter further analyzes the microwave combustion and sol–gel synthesis methods of nickel ferrites and considers magnetic and dielectric properties of nickel ferrites. The lattice parameter, strain density, and dislocation for NiFe2O4 depending on calcination temperature are also discussed. Finally, the chapter analyzes crystallites size, crystal deformation, and dislocation density and reviews applications of ferrites, catalysts based on nickel ferrite, nickel ferrites for gas sensing, and water treatment.


Nickel ferrites Synthesis methods Nanoparticles 



The authors thank the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” for the opportunity to carry out this research.


  1. 1.
    Pileni MP et al (2001) Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv Funct Mater 11:323CrossRefGoogle Scholar
  2. 2.
    Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269CrossRefGoogle Scholar
  3. 3.
    Song Q et al (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164CrossRefGoogle Scholar
  4. 4.
    Ceylan A et al (2009) Investigation of nickel ferrite formation in a binary Fe(III)-Ni(II) hydroxide precipitate containing H2O with or without Li2O doping. J Alloys Compd 486:824CrossRefGoogle Scholar
  5. 5.
    Doh SG et al (2004) Characteristics and synthesis of Cu-Ni ferrite nanopowders by coprecipitation method with ultrasound irradiation. J Magn Magn Mater 272:2238ADSCrossRefGoogle Scholar
  6. 6.
    Chen DH et al (2001) Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull 36:1369CrossRefGoogle Scholar
  7. 7.
    Chatterjee A et al (1993) Synthesis of nanocrystalline nickel-zinc ferrite by the sol-gel method. J Magn Magn Mater 127:214ADSCrossRefGoogle Scholar
  8. 8.
    George M et al (2006) Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190ADSCrossRefGoogle Scholar
  9. 9.
    Huo JZ et al (2009) Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater Lett 63:1183CrossRefGoogle Scholar
  10. 10.
    Zhou J et al (2005) Low temperature synthesis of NiFe2O4 by a hydrothermal method. J Am Ceram Soc 88:2135Google Scholar
  11. 11.
    Fand J et al (2003) Ultrafine NiFe2O4 powder fabricated from reverse microemulsion process. J Appl Phys 93:7483ADSCrossRefGoogle Scholar
  12. 12.
    RDK M et al (2003) Synthesis of nanocrystalline nickel and zinc ferrites by microemulsion technique. Mater Sci Technol 19:826CrossRefGoogle Scholar
  13. 13.
    Elmasry MA et al (1997) Preparation of nickel ferrite using the aerosolization technique: Part I: aerosolization behaviour of individual raw material solutions. Powder Technol 90:161CrossRefGoogle Scholar
  14. 14.
    Venkatesh M et al (2016) Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets. Mod Electron Mater 2:74CrossRefGoogle Scholar
  15. 15.
    Goldman A (1993) Modern ferrite technology, 2nd edn. Marcel Dekker, New York, p 438, ISBN 978-0387281513Google Scholar
  16. 16.
    Li D et al (2014) Structural and magnetic properties of nickel ferrite nanoparticles synthesized via a template-assisted sol-gel method. Ceram Int 40:16529CrossRefGoogle Scholar
  17. 17.
    Perron H et al (2007) Structural investigation and electronic properties of the nickel ferrite NiFe2O4: a periodic density functional theory approach. J Phys Condens Matter 19:346219CrossRefGoogle Scholar
  18. 18.
    Polaert I et al (2015) Dielectric and magnetic properties of NiFe2O4 at 2.45 GHz and heating capacity for potential uses under microwaves. J Magn Magn Mater 374:731ADSCrossRefGoogle Scholar
  19. 19.
    Cullity BD (1978) Elements of X-ray diffraction. In: Cohen M (ed) Addison-Wesley series in metallurgy and materials, 2nd edn. Addison-Wesly Publishing Co. Inc., Massachusetts - Menlo Park, California London - Amsterdam - Don Mills, Ontario – Sydney, p 531, ISBN 978-0201610918Google Scholar
  20. 20.
    Rahman IZ et al (2005) A study on Cu substituted chemically processed Ni-Zn-Cu ferrites. J Magn Magn Mater 290:1576ADSCrossRefGoogle Scholar
  21. 21.
    Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline. IEEE Trans Magn 26:1397ADSCrossRefGoogle Scholar
  22. 22.
    Xia A et al (2014) Facile hydrothermal synthesis of core/shell-like composite SrFe12O19/(Ni,Zn)Fe2O4 nanoparticles and their magnetic properties. RSC Adv 4:18885CrossRefGoogle Scholar
  23. 23.
    Nguyet DTT et al (2011) Crystallization and magnetic behavior of nanosized nickel ferrite prepared by citrate precursor method. J Alloys Compd 0925:8388Google Scholar
  24. 24.
    Emdadul SKI et al (2014) Synthesis and characterization of nickel ferrite: role of sintering temperature on structural parameters. J Elect Phys 30:926Google Scholar
  25. 25.
    Moghaddam FM et al (2015) A copper-free Sonogashira reaction using nickel ferrite as catalyst in water. Catal Commun 60:82CrossRefGoogle Scholar
  26. 26.
    Yu LK et al (2013) Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process. Ceram Int 39:5459CrossRefGoogle Scholar
  27. 27.
    Huang YH et al (2015) Catalysts prepared from copper–nickel ferrites for the steam reforming of methanol. J Power Sources 281:138CrossRefGoogle Scholar
  28. 28.
    Rafik B et al (2012) Nickel ferrite spinel as catalyst precursor in the dry reforming of methane: synthesis, characterization and catalytic properties. J Nat Gas Chem 21:595CrossRefGoogle Scholar
  29. 29.
    Divya SN et al (2017) Catalytic peroxide oxidation of persistent chlorinated organics over nickel-zinc ferrite nanocomposites. J Wat Process Eng 16:69CrossRefGoogle Scholar
  30. 30.
    Petrisor S et al (2017) Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl Catal Environ 202:21CrossRefGoogle Scholar
  31. 31.
    Patil JY et al (2014) Synthesis of glycine combusted NiFe2O4 spinel ferrite: a highly versatile gas sensor. Mater Lett 475:144CrossRefGoogle Scholar
  32. 32.
    Zhou T et al (2018) Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform. Sens Actuators B Chem 255:1436CrossRefGoogle Scholar
  33. 33.
    Springer V et al (2016) Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions. J Environ Chem Eng 4(4):3882CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iryna Ivanenko
    • 1
  • Serhii Lesik
    • 1
  • Ihor Astrelin
    • 1
  • Yurii Fedenko
    • 1
  1. 1.Department of Inorganic Substances TechnologyWater Treatment and General Chemical Engineering of National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations