Advertisement

The Kinetics Peculiarities and the Electrolysis Regime Effect on the Morphology and Phase Composition of Fe-Co-W(Mo) Coatings

  • Iryna Yu. Yermolenko
  • Maryna V. Ved’
  • Nikolay D. Sakhnenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

The electrodeposition theory aspects of the ternary iron alloys with refractory metals are discussed. The kinetic parameters and characteristic criteria of electrode reactions occurring during the formation of ternary Fe-Co-W(Мо) alloys have been defined. It was shown that hetero-nuclear complexes [FeHCitMеO4] [СоНCitМеO4]2− (where Ме is Мо, W) and [FeHCit]+ and [CoCit] complexes are involved in cathode processes. The oxometalates show step-by-step reduction producing tungsten (molybdenum) oxides of variable oxidation states that are reduced electrochemically and chemically by hydrogen adatoms. The competitive reduction of iron with cobalt and iron with tungsten at the Fe-Сo-W alloy deposition and the competitive reduction of cobalt with molybdenum into the Fe-Сo-Mo alloy were established. A mechanism of iron and cobalt with tungsten and/or molybdenum co-deposition into ternary alloys has been substantiated as a set of the coupled reactions of intermediate irreversible reduction with the limiting stage of electron transfer and the previous stage of ligand release. It was found that the pulse current allows formation of a more uniform coating surface and a significant decrease in the oxygen contained in the coatings compared with the direct current mode. X-ray phase analysis showed the amorphous and crystal structure of Fe-Co-W(Мо) alloys with a zone of coherent dispersion of 2–8 nm and intermetallic compounds Co7W6 and Fe7W6 in Fe-Co-W alloy and the inter-metallic phases Fe7Мо, Fe7Co, FeCo in the Fe-Co-Мо alloy. A change in the phase composition of Fe-Co-W alloys obtained by a pulse current was found that consists in the additional formation of crystalline tungsten phase and inter-metallic Fe2W. The X-ray patterns of Fe-Сo-Mo alloys visualize lines corresponding to crystalline cobalt and molybdenum, but the lines of inter-metallic iron compounds with cobalt are disappearing.

Keywords

Amorphous phases Cobalt Electrodeposition Iron Molybdenum Pulse current Ternary alloys Tungsten 

References

  1. 1.
    Vernickaite E, Tsyntsaru N, Cesiulis H (2016) Electrodeposited co-W alloys and their prospects as effective anode for methanol oxidation in acidic media. Surf Coatings Tech 307:1322.  https://doi.org/10.1016/j.surfcoat.2016.07.049 CrossRefGoogle Scholar
  2. 2.
    Sakhnenko MD, Ved’ MV, Ermolenko IY, Hapon YK, Kozyar MO (2017) Design, synthesis, and diagnostics of functional galvanic coatings made of multicomponent alloys. Mater Sci 52(5):680–686.  https://doi.org/10.1007/s11003-017-0009-7 CrossRefGoogle Scholar
  3. 3.
    Ramanauskas R, Gudavičiūtė L, Juškėnas R (2008) Effect of pulse plating on the composition and corrosion properties of Zn–Co and Zn–Fe alloy coatings. Chemija 19(1):7–13Google Scholar
  4. 4.
    Yermolenko I, Ved’ M, Karakurkchi A, Proskurina V, Sknar I, Y K, Sverdlikovska O, Sigunov O (2017) Research into influence of the electrolysis modes on the composition of galvanic Fe-Co-Mo coatings. East-Eur J Enterprise Technol Mater Sci 3/12(87):9–15.  https://doi.org/10.15587/1729-4061.2017.103100 CrossRefGoogle Scholar
  5. 5.
    Shao II, Vereecken PM, Chien CL, Cammarata RC, Searson PC (2003) Electrochemical deposition of FeCo and FeCoV alloys. J Electrochem Soc 150:C184–C188CrossRefGoogle Scholar
  6. 6.
    Tsyntsaru N, Cesiulis H, Budreika A, Juskenas R, Celis J-P (2012) The effect of electrodeposition conditions and post-annealing on nanostructure of co–W coatings. Surf Coat Technol 206(19–20):4262–4269.  https://doi.org/10.1016/j.surfcoat.2012.04.036 CrossRefGoogle Scholar
  7. 7.
    Grabco DZ, Dikusar IA, Petrenko VI et al (2007) Micromechanical properties of Co–W alloys electrodeposited under pulse conditions. Surf Eng Appl Electrochem 43(1):11–17.  https://doi.org/10.3103/S1068375507010024 CrossRefGoogle Scholar
  8. 8.
    Ved’ MV, Ermolenko IY, Sakhnenko ND, Zyubanova SI, Sachanova YI (2017) Methods for controlling the composition and morphology of electrodeposited Fe–Mo and Fe–Co–Mo coatings. Surf Eng Appl Electrochem 53(6):525–532.  https://doi.org/10.3103/S1068375517060138 CrossRefGoogle Scholar
  9. 9.
    Tsyntsaru N, Cesiulis H, Donten M, Sort J, Pellicer E, Podlaha-Murphy EJ (2012) Modern trends in tungsten alloys electrodeposition with iron group metals. Surf Eng Appl Electrochem 48(6):491–520CrossRefGoogle Scholar
  10. 10.
    Ćirović N, Spasojević P, Ribić-Zelenović L, Mašković P, Spasojević M (2015) Synthesis, structure and properties of nickel-Iron-tungsten alloy electrodeposits. I: Effect of synthesis parameters on chemical composition, microstructure and morphology. Sci Sinter 47:347–365.  https://doi.org/10.2298/SOS1503347C CrossRefGoogle Scholar
  11. 11.
    Ved’ MV, Sakhnenko MD, Karakurkchi HV, Ermolenko IY, Fomina LP (2016) Functional properties of Fe−Mo and Fe−Mo−W galvanic alloys. Mater Sci 51(5):701–710.  https://doi.org/10.1007/s11003-016-9893-5 CrossRefGoogle Scholar
  12. 12.
    Gómez E, Pellicer E, Vallés E (2003) Influence of the bath composition and the pH on the induced cobalt/molybdenum electrodeposition. J Electroanal Chem 556:137–145CrossRefGoogle Scholar
  13. 13.
    Podlaha EJ, Landolt D (1997) Induced codeposition: III. Molybdenum alloys with nickel, cobalt and iron. J Electrochem Soc 144(5):1672–1680CrossRefGoogle Scholar
  14. 14.
    Younes O, Zhu L, Rosenberg Y, Shacham-Diamond Y, Gileadi E (2001) Electroplating of amorphous thin films of tungsten/nickel alloys. Langmuir 17(26):8270–8275.  https://doi.org/10.1021/la010660x CrossRefGoogle Scholar
  15. 15.
    Younes-Metzler O, Zhu L, Gileadi E (2003) The anomalous codeposition of tungsten in the presence of nickel. Electrochim Acta 48(18):2551–2562.  https://doi.org/10.1016/S0013-4686(03)00297-4 CrossRefGoogle Scholar
  16. 16.
    Belevskii SS, Yushchenko SP, Dikusar AI (2012) Anomalous electrodeposition of Co-W coatings from a citrate electrolyte due to the formation of multinuclear Heterometallic complexes in the solution. Surf Eng Appl Electrochem 48(1):97–98CrossRefGoogle Scholar
  17. 17.
    Shulman AI, Belevskii SS, Yushchenko SP, Dikusar AI (2014) Role of complexation in forming composition of Co–W coatings electrodeposited from gluconate electrolyte. Surf Eng Appl Elect 50(1):9–17.  https://doi.org/10.3103/S106837551401013X CrossRefGoogle Scholar
  18. 18.
    Bobanova ZI, Grabko DZ, Danitse Z, Y M, Dikusar AI (2007) Elektroosazhdenie i svoystva splava zhelezo-vol’fram [Electrodeposition and properties of the iron-tungsten alloy]. Elektronnaya Obrab Mater 4:12–21. (in Russian)Google Scholar
  19. 19.
    Danilov FI, Protsenko VS, Ubiikon’ AV (2005) Kinetic regularities governing the reaction of electrodeposition of iron from solutions of citrate complexes of iron (III). Russ J Electrochem 41(2):1282–1289CrossRefGoogle Scholar
  20. 20.
    Yermolenko IY, Ved’ MV, Karakurkchi AV, Sakhnenko ND, Kolupaieva ZI (2017) Electrochemical behavior of Fe3+–WO4 2−–Cit3− and Fe3+–MoO4 2−–WO4 2−–Cit3− systems. Issues Chem Chem Technol 2(III):4–14Google Scholar
  21. 21.
    Budnikov GK, Maystrenko VN, Vyaselev MR (2003) Osnovy sovremennogo elektrokhimicheskogo analiza [Fundamentals of contemporary electrochemical analyzes]. Mir Binom LZ Publishers, Moscow, p 592. (in Russian)Google Scholar
  22. 22.
    Mikhailov IF, Baturin AA, Mikhailov AI, Fomina LP (2016) Perspectives of development of X-ray analysis for material composition. Func Mater 23(1):5–14CrossRefGoogle Scholar
  23. 23.
    Ved’ MV, Sakhnenko MD (2010) Katalitychni ta zakhysni pokryttia splavamy i skladnymy oksydamy: elektrokhimichnyi syntez, prohnozuvannia vlastyvostei [Tekst]: monohrafiia. NTU «KhPI», Kharkiv, p 272Google Scholar
  24. 24.
    Tochitskiy A, Dmitrieva AE (2013) O mehanizme formirovaniya rentgenoamorfnoy strukturyi plyonok splavov Ni-W [On the mechanism of formation of amorphous structure of Ni-W alloy films]. Metallofiz Noveyshie Tehnol 35(12):1629–1636. (in Russian)Google Scholar
  25. 25.
    Gamburg YD, Zakharov YN (2008) Vliyaniye vodoroda na amorfizatsiyu splavov zhelezo-vol’fram poluchayemykh pri elektrokhimicheskom sinteze [The effect of hydrogen on the amorphization of iron-tungsten alloys obtained by electrochemical synthesis]. Elektrokhimiya 44(6):792–795. (in Russian)Google Scholar
  26. 26.
    Karakurkchi AV, Ved’ MV, Ermolenko IY, Sakhnenko ND (2016) Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surf Eng Appl Electrochem 52(1):43–49.  https://doi.org/10.3103/S1068375516010087 CrossRefGoogle Scholar
  27. 27.
    Ved’ MV, Sakhnenko ND, Yermolenko IY, Nenastina TA (2018) Nanostructured functional coatings of Iron family metals with refractory elements. In: Fesenko O, Yatsenko L (eds) Nanochemistry, biotechnology, nanomaterials, and their applications. NANO 2017. Springer proceedings in physics. Springer, Cham, p 214.  https://doi.org/10.1007/978-3-319-92567-7_1 CrossRefGoogle Scholar
  28. 28.
    Yermolenko IY, Ved’ MV, Sakhnenko ND, Sachanova YI (2017) Composition, morphology, and topography of galvanic coatings Fe-Co-W and Fe-Co-Mo. Nanoscale Res Lett 12(1):352.  https://doi.org/10.1186/s11671-017-2128-3 ADSCrossRefGoogle Scholar
  29. 29.
    Donten M, Stojek Z, Cesiulis H (2003) Formation of nanofibres in thin layers of amorphous W alloys with Ni, Co and Fe obtained by electrodeposition. J Electrochem Soc 150(2):695–698CrossRefGoogle Scholar
  30. 30.
    Yar-Mukhamedova GS, Sakhnenko ND, Ved’ MV, Yermolenko IY, Zyubanova SI (2017) Surface analysis of Fe-co-Mo electrolytic coatings. IOP Conf Series: Mater Sci Eng 213:012019.  https://doi.org/10.1088/1757-899X/213/1/012019 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iryna Yu. Yermolenko
    • 1
  • Maryna V. Ved’
    • 1
  • Nikolay D. Sakhnenko
    • 1
  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations