Advertisement

Radiation-Stimulated Formation of Polyene Structures in Polyethylene Nanocomposites with Multi-walled Carbon Nanotubes

  • М. A. Alieksandrov
  • Т. М. Pinchuk-Rugal
  • О. P. Dmytrenko
  • М. P. Kulish
  • V. V. Shlapatska
  • V. M. Tkach
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

Investigation of multi-walled carbon nanotubes (MWCNTs) and low-density polyethylene nanocomposites with MWCNT morphology were performed using transmission and scanning electron microscopy. Crystalline structure and crystallinity degree were studied for initial nanocomposites and after electron irradiation with different doses (0–4.72 MGy). It was established that a wide structured photoluminescence band (350–700 nm) occurs in bulk specimens of polytetrafluorethylene and its composites with MWCNTs as a result of thermal and mechanical impact during preparation. Five distinct components of spectra were identified as a manifestation of the excitation of –C=O– bonds and energy transfer from those bonds to polyenic π- conjugated chains of different lengths.

Keywords

Polyethylene MWCNT SEM IR spectroscopy Photoluminescence Polyenic chain electron irradiation 

References

  1. 1.
    Bhattachargya AR, Sreekumar TV (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44:2373–2377CrossRefGoogle Scholar
  2. 2.
    Mierczynska A, Friedrich J (2004) Segregated network polymer/carbon nanotubes composites. Cent Eur J Chem 2(2):363–370Google Scholar
  3. 3.
    Olasz L, Gudmundson P (2006) Viscoelastic model of crosslinked polyethylene including effects of temperature and crystallinity. Mech Time Depend Mater 9:225–246Google Scholar
  4. 4.
    Myasnikova L, Blashenkov N, Boiko Y (2006) Relaxation processes in polymer surface layers. Micromol Symp 242:182–192CrossRefGoogle Scholar
  5. 5.
    Valentinoa O, Sarnoad M, Rainone N (2008) Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys E 40:2440–2445CrossRefGoogle Scholar
  6. 6.
    Bystrzejewski M, Rümmeli MH, Gemming T (2009) Functionalizing single-wall carbon nanotubes in hollow cathode glow discharges. Plasma Chem Plasma Process 29:79–90CrossRefGoogle Scholar
  7. 7.
    Gorrasi G, Di Lieto R, Patimo G (2011) Structure-property relationships on uniaxially oriented carbon nanotube/polyethylene composites. Polymer 52:1124–1132CrossRefGoogle Scholar
  8. 8.
    Pinchuk-Rugal TM, Dmytrenko OP, Kulish MP, Prylutskyy YI, Nychyporenko OS, Shut MI, Tkach VM, Shlapatska VV (2016) The electron radiation effect of polyvinylchloride (PVC) nanocomposites with multiwalled carbon nanotubes. Nanophysics, nanomaterials, interface studies and applications. Springer Proc Phy 195:757–770CrossRefGoogle Scholar
  9. 9.
    Mo Z (1995) The degree of crystallinity in polymers by wide-angle X-ray diffraction (WAXD). Macromol Chem Phys 35(4):555–580CrossRefGoogle Scholar
  10. 10.
    Pinchuk-Rugal ТМ, Nychyporenko ОS, Dmytrenko ОP, Kulish МP, Grabovskyy YY, Zabolotnyy МА, Rugal ОG, Mamunya YP, Levchenko VV, Shlapatskaya VV, Tkach VМ (2013) Morphology and structure of high-pressure polyethylene nanocomposites with multi-walled carbon nanotubes under irradiation. Probl At Sci Technol 5(87):173–177Google Scholar
  11. 11.
    Pinchuk-Rugal TM, Nychyporenko OS, Dmytrenko OP, Kulish MP, Grabovskyy YY, Zabolotnyy MA, Mamunya YP, Levchenko VV, Shlapatskaya VV, Strelchuk VV, Tkach VM (2016) Radiation-stimulated alternation of electrical conductivity of nanocomposite of polyethylene with multi-wall carbon nanotubes. Probl Atom Sci Tech 102(2):99–106Google Scholar
  12. 12.
    Krimm S, Liang CY, Sutherland GB (1956) Infrared spectra of high polymers. II. Polyethylene. J Chem Phys 25:549–562ADSCrossRefGoogle Scholar
  13. 13.
    Khatipov SA, Nurmukhametov NR, Seliverstov ID, Sergeev AM (2006) Spectrophotometric and luminescent analysis of polytetrafluoroethylene treated by γ-irradiation near the melting point. Polym Sci Ser A 48(2):263–270CrossRefGoogle Scholar
  14. 14.
    Oshima A, Ikeda S, Kator E, Tabata Y (2001) Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene. Radiat Phys Chem 62(1):39–45ADSCrossRefGoogle Scholar
  15. 15.
    Konova ME, Sakhno YE, Khatipov AS et al (2011) Mechanical and optical properties of polytetrafluoroethylene treated by γ-irradiation near the melting point. Phys Chem Solid State 12(4):1013–1017Google Scholar
  16. 16.
    Chatipov AS, Artamonov AN (2008) Creating a new sealing and antifriction material based on radiation-modified polytetrafluoroethylene. Ros Chim J LII(3):89–97Google Scholar
  17. 17.
    Pikaev KA (1987) Modern radiation chemistry. Solid body and polymers. Applied aspects. Nauka, MoscowGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • М. A. Alieksandrov
    • 1
  • Т. М. Pinchuk-Rugal
    • 1
  • О. P. Dmytrenko
    • 1
  • М. P. Kulish
    • 1
  • V. V. Shlapatska
    • 2
  • V. M. Tkach
    • 3
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.L.V. Pisarghevskiy Institute of Physical Chemistry NAS of UkraineKyivUkraine
  3. 3.V. Bakul Institute for Superhard Materials NAS of UkraineKyivUkraine

Personalised recommendations