Simulation of Tunneling Conductivity and Controlled Percolation In 3D Nanotube-Insulator Composite System

  • I. Karbovnyk
  • Yu. Olenych
  • D. Chalyy
  • D. Lukashevych
  • H. Klym
  • A. Stelmashchuk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)


Analysis of percolation phenomenon in the system of straight nanotubes is carried out, and an appropriate model of the process is proposed. The algorithm for finding the probability of nanotubes percolation is implemented using three-dimensional graphics visualization tools. The effect of geometric size and concentration of the nanotubes on the percolation probability was investigated. Based on the analysis of the dependence of percolation probability on the values of the dispersion angles determining the nanotubes orientation, the basic regularities of the conductive cluster formation under the influence of an electric field are established. The optimal parameters of the nanotube system with field-controlled percolation were determined. It is shown that conductivity of random nanotube network formed in the dielectric medium is simulated considering tunneling conductivity between individual nanotubes being in close proximity and taking into account intrinsic conductivity of nanotubes.


Nanocomposite Nanotubes Percolation Conductivity Computer simulation Percolation probability 3D visualization Tunneling 



The authors thank the Ministry of Education and Science of Ukraine for support.


  1. 1.
    Bao WS, Meguid SA, Zhu ZH, Meguid MJ (2011) Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnology 22(48):485704. CrossRefGoogle Scholar
  2. 2.
    Yu Y, Song G, Sun L (2010) Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes. J Appl Phys 108:084319. ADSCrossRefGoogle Scholar
  3. 3.
    Karbovnyk I, Olenych I, Aksimentyeva O, Klym H, Dzendzelyuk O, Olenych Y, Hrushetska O (2016) Effect of radiation on the electrical properties of PEDOT-based nanocomposites. Nanoscale Res Lett 11(1):84. ADSCrossRefGoogle Scholar
  4. 4.
    Klym H, Hadzaman I, Shpotyuk O (2015) Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO-Al2O3 ceramics. Mater Sci 21(1):92–95. CrossRefGoogle Scholar
  5. 5.
    Karbovnyk I, Collins J, Bolesta I, Stelmashchuk A, Kolkevych A, Velupillai S, Klym H, Fedyshyn O, Tymoshuk S, Kolych I (2015) Random nanostructured metallic films for environmental monitoring and optical sensing: experimental and computational studies. Nanoscale Res Lett 10:151. ADSCrossRefGoogle Scholar
  6. 6.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Hotra O, Kostiv Y (2016) Nanostructural free-volume effects in humidity-sensitive MgO-Al2O3 ceramics for sensor applications. J Mater Eng Perform 25(3):866–873. CrossRefGoogle Scholar
  7. 7.
    Klym H, Balitska V, Shpotyuk O, Hadzaman I (2014) Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectron Reliab 54(12):2843–2848. CrossRefGoogle Scholar
  8. 8.
    Vakiv M, Hadzaman I, Klym H, Shpotyuk O, Brunner M (2011) Multifunctional thick-film structures based on spinel ceramics for environment sensors. J Phys Conf Ser 289(1):012011. CrossRefGoogle Scholar
  9. 9.
    Klym H, Hadzaman I, Shpotyuk O, Brunner M (2014) Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Res Lett 9(1):149. ADSCrossRefGoogle Scholar
  10. 10.
    Klym H, Ingram A, Shpotyuk O, Filipecki J (2010) PALS as characterization tool in application to humidity-sensitive electroceramics. 27th Int Conf Microelectron Proc (MIEL):239–242.
  11. 11.
    Olenych IB, Aksimentyeva OI, Karbovnyk ID, Olenych YI, Yarytska LI (2014) Preparation and properties of hybrid poly (3,4-ethylenedioxythiophene)–carbon nanotubes composites. Proc Int Conf Nanomater Appl Prop 3(2):02NNSA13-1 13-3Google Scholar
  12. 12.
    Tarasevich YY (2002) Percolation: theory, applications, algorithms. Editorial URSS (in Russian), MoscowGoogle Scholar
  13. 13.
    Sahimi M (1994) Applications of percolation theory. Taylor & Francis, LondonGoogle Scholar
  14. 14.
    Bellucci S, Bolesta I, Cestelli Guidi M, Karbovnyk I, Lesivciv V, Micciulla F, Pastore R, Popov AI, Velgosh S (2007) Cadmium clusters in CdI2 layered crystals: the influence on the optical properties. J Phys Condens Matter 19(39):395015. CrossRefGoogle Scholar
  15. 15.
    Hadzaman I, Klym H, Shpotyuk O (2014) Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. Int J Nanotechnol 11(9-10-11):843–853. CrossRefGoogle Scholar
  16. 16.
    Berhan L, Sastry AM (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E 75(4):041120. ADSCrossRefGoogle Scholar
  17. 17.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498. CrossRefGoogle Scholar
  18. 18.
    Lu W, Chou TW, Thostenson ET (2010) A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. Appl Phys Lett 96(22):223106. ADSCrossRefGoogle Scholar
  19. 19.
    Hu N, Masuda Z, Yan C, Yamamoto G, Fukunaga H, Hashida T (2008) The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 19(21):215701. ADSCrossRefGoogle Scholar
  20. 20.
    Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72(12):121404. ADSCrossRefGoogle Scholar
  21. 21.
    Massey MK, Kotsialos A, Volpati D, Vissol-Gaudin E, Pearson C, Bowen L, Obara B, Zeze DA, Groves C, Petty MC (2016) Evolution of electronic circuits using carbon nanotube composites. Sci Rep 6:32197. ADSCrossRefGoogle Scholar
  22. 22.
    Stelmashchuk A, Karbovnyk I, Klym H, Berezko O, Kostiv Y, Lys R (2017) Modeling and quantitative analysis of connectivity and conductivity in random networks of nanotubes. EastEur J Enterp Technol 5(12 (89)):4–12. CrossRefGoogle Scholar
  23. 23.
    Karbovnyk I, Olenych Y, Lukashevych D, Chalyy D, Girnyk I, Rudko M, Klym H (2018) Low temperature electrical behavior of CNT-based nanocomposites. Proceedings of the 2018 IEEE 8th international conference on nanomateroals applications & properties (NAP-2018):01SPN80-1-4Google Scholar
  24. 24.
    Bao WS, Meguid SA, Zhu ZH, Weng GJ (2012) Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J Appl Phys 111(9):093726. ADSCrossRefGoogle Scholar
  25. 25.
    Fang W, Jang HW, Leung SN (2015) Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks. Compos Part B 83:184–193. CrossRefGoogle Scholar
  26. 26.
    Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207. ADSCrossRefGoogle Scholar
  27. 27.
    Tamura R, Tsukada M (1997) Electronic transport in carbon nanotube junctions. Solid State Commun 101(8):601–605. ADSCrossRefGoogle Scholar
  28. 28.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes, vol 3. Imperial College Press, LondonCrossRefGoogle Scholar
  29. 29.
    Imry Y, Landauer R (1999) Conductance viewed as transmission. Rev Mod Phys 71(2):S306. CrossRefGoogle Scholar
  30. 30.
    Buldum A, Lu JP (2001) Contact resistance between carbon nanotubes. Phys Rev B 63(16):161403. ADSCrossRefGoogle Scholar
  31. 31.
    Naeemi A, Meindl ID (2009) Performance modeling for carbon nanotube interconnects. In: Carbon nanotube electronics. Springer, New York, pp 163–190CrossRefGoogle Scholar
  32. 32.
    Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58(20):13870. ADSCrossRefGoogle Scholar
  33. 33.
    Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104. ADSCrossRefGoogle Scholar
  34. 34.
    Simmons JG (1963) Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34(6):1793–1803. ADSCrossRefGoogle Scholar
  35. 35.
    Li XS (2005) An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans Math Softw 31(3):302–325. MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li XS, Demmel JW, Gilbert IR, Grigori L, Shao M, Yamazaki I (1999) SuperLU users’ guide. Lawrence Berkeley National Laboratory, BerkeleyGoogle Scholar
  37. 37.
    Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JW (1999) A supernodal approach to sparse partial pivoting. SIAM J Matrix Anal Appl 20(3):720–755. MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Stelmashchuk A, Karbovnyk I, Klym H, Lukashevych D, Chalyy D (2017) Simulation of the tunelling conductivity in nanotube/dielectric composite. 37th international conference on electronics and nanotechnology (ELNANO):209–212.
  39. 39.
    Stelmashchuk A, Karbovnyk I, Klym H (2016) Computer simulations of nanotube networks in dielectric matrix. 13th international conference on modern problems of radio engineering telecommunications and computer science (TCSET): 415–417.
  40. 40.
    Stelmashchuk A, Karbovnyk I, Chalyy D, Lukashevych D, Klym H (2017) Parametric modeling of conductivity in percolating nanotube network. First Ukraine conference on electrical and computer engineering (UKRCON):740–743.
  41. 41.
    Olenych Y, Karbovnyk I, Klym H (2018) Computer simulation of field-controlled percolation in 3D system of straight nanotubes. XIV-th international conference on perspective technologies and methods in MEMS design (MEMSTECH):48–51.
  42. 42.
    Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249. CrossRefGoogle Scholar
  43. 43.
    Zeng X, Xu X, Shenai PM, Kovalev E, Baudot C, Mathews N, Zhao Y (2011) Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C 115(44):21685–21690. CrossRefGoogle Scholar
  44. 44.
    Olenych Y, Karbovnyk I, Shmygelsky Y, Klym H (2018) Modeling of percolation phenomena in 3D nanotube system. Electron Inf Technol 9:40–47. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • I. Karbovnyk
    • 1
  • Yu. Olenych
    • 1
  • D. Chalyy
    • 2
  • D. Lukashevych
    • 3
  • H. Klym
    • 3
  • A. Stelmashchuk
    • 1
  1. 1.Ivan Franko National University of LvivLvivUkraine
  2. 2.Lviv State University of Life SafetyLvivUkraine
  3. 3.Lviv Polytechnic National UniversityLvivUkraine

Personalised recommendations