Advertisement

Development of the Nano-mineral Phases at the Steel-Bentonite Interface in Time of the Evolution of Geological Repository for Radioactive Waste

  • B. H. Shabalin
  • O. M. Lavrynenko
  • O. Yu. Pavlenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

The present review is aimed at the analysis of recent original publications, devoted to the study of the phase formation processes at the interface between bentonite buffer, containing montmorillonite (70–90 mass.%), and the surface of steel container under conditions of radioactive waste geological repository. It is expected that the evolution of geological disposal leads to the changes of mineralogical, geo-mechanical, and hydraulic properties of bentonite buffer. Ferric saponite, berthierine, or chlorite may be formed under the following conditions as the products of phase transformations of the buffer material. The primary iron-oxygen structures may be formed on the surface of steel container under conditions of geological repository, and, probably, they will contribute to fix radionuclides at the steel-bentonite interface. So, to predict the long-term stability of bentonite buffer under conditions of geological repository, including mineralogical-geochemical processes, a complex experimental study is required.

One of the important processes that can become critical for bentonite’s isolating properties is the illitization of montmorillonite, which rate depends on temperature, chemical composition of the water medium (pH and concentration of alkaline cations, especially K+), degree of bentonite saturation with water, and the ratio between dispersed phase and dispersion medium. Whereas the low temperature in the repository does not permit to run the illitization process, the usage of external building materials, in particular, cements, may shift the balance and lead to transformation of bentonite into illite.

Keywords

Bentonite Corrosion of steel Steel-bentonite interface Phase transformation of bentonite Illitization Green Rust Ferrihydrite 

References

  1. 1.
    Lavrynenko OM, Prokopenko VA, Lebovka NI, Mamunia SV (2008) Colliid Journ 70(3), RU, 1–8Google Scholar
  2. 2.
    Chuhrov FV, Ermilova LP, Gorshkov AI et al (1975) Gipergennyie okislyi zheleza v geologicheskih protsessah, Nauka, Moskov, RU, 207 pGoogle Scholar
  3. 3.
    Holdberg VM, Skvortsov NP (1986) Pronitsaemost i filtratsiya v glinah, Nedra, Moskov, RU, 160 pGoogle Scholar
  4. 4.
    Drits VA, Kossovskaya AG (1990) Glinistyie mineralyi: smektityi, smeshanosloynyie obrazovaniya: Monografiya, Nauka, Moskov, RU, 214 pGoogle Scholar
  5. 5.
    Lavrynenko OM (2009) Nanostrukturnoe materialovedenie, № 3, RU, pp 15–40Google Scholar
  6. 6.
    Lavrynenko OM (2009) Nanostrukturnoe materialovedenie, № 4, RU, pp 16–53Google Scholar
  7. 7.
    Nanomineralogiya. Ultra- i mikrodispersnoe sostoyanie mineralnogo veschestva (2005) Nauka, St.Petersburg, RU, 581 pGoogle Scholar
  8. 8.
    Shabalin BH, Lavrynenko OM, Kosorukov PO, Buhera SP (2018) Mineral Journ, Т. – №.4, Kyiv, UA, pp (in Print)Google Scholar
  9. 9.
    Bennett DG, Gens R (2008) J Nucl Mater 379:1–8ADSCrossRefGoogle Scholar
  10. 10.
    Burleson DJ, Penn RL (2006) Langmuir V(22):402–409CrossRefGoogle Scholar
  11. 11.
    Abdelmoula M, Refait P, Drissi SH et al (1996) Corros Sci 38(4):623–633CrossRefGoogle Scholar
  12. 12.
    Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses/R. M. Cornell, U. Schwertmann 2nd ed. Wiley, Weinheim, 703 pGoogle Scholar
  13. 13.
    Corrosion and alteration of nuclear materials (2010) Paris: CEA. 160 pGoogle Scholar
  14. 14.
    Curti E, Wersin P (2009) Assessment of porewater chemistry in the bentonite backfill for the Swiss SF //HLW repository. Nagra. Technical report 02–09. 78 рGoogle Scholar
  15. 15.
    Benali O, Abdelmoula M, Refait P, Genin J-MR (2001) Geochim Cosmochim Acta 65(11):1715–1726ADSCrossRefGoogle Scholar
  16. 16.
    Lair V, Antony H, Legrand L, Chausse A (2006) Corros Sci. V 48:2050–2063CrossRefGoogle Scholar
  17. 17.
    Flynn CM (1984) Chem Rev 84:31–41CrossRefGoogle Scholar
  18. 18.
    Refait P, Benali O, Abdelmoula M, Genin J-MR (2003) Corr Sci 45:2435–2449CrossRefGoogle Scholar
  19. 19.
    Fukaya Y, Akashi M (1999) Mat Res Symp Proc 556:871–878CrossRefGoogle Scholar
  20. 20.
    disposal G (2014) A review of the development of bentonite barriers in the KBS-3V disposal concept. In: NDA technical note no. 21665941, p 84Google Scholar
  21. 21.
    Sumoondur A, Shaw S, Ahmed I, Benning LG (2008) Mineral Magazine 72(1):201–204ADSCrossRefGoogle Scholar
  22. 22.
    Ishikawa H, Shibata M, Fujita T (1994) Journal of the Clay Science Society of Japan., V 34:149–156Google Scholar
  23. 23.
    Kamei G, Yusa Y, Sasaki N (1992) Mater Res Soc Symp Proc., V 257:505–512Google Scholar
  24. 24.
    Karnland O, Olsson S, Nilsson U (2006) Mineralogy and sealing properties of various bentonites and smectite–rich clay minerals // SKB technical report TR-06-30Google Scholar
  25. 25.
    King F (2008) Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay. Technical Report 08–12. Wettingen: Nagra, 44 pGoogle Scholar
  26. 26.
    King F, Kolar M (2009) Theory manual for the steel corrosion model version 1.0 Report No.: NWMO TR-2009-07Google Scholar
  27. 27.
    King F, Shoesmith DW (2010) In: Ahn J, Apted MJ (eds) Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste. Woodhead Publishing Ltd, Cornwall, pp 379–420CrossRefGoogle Scholar
  28. 28.
    Kumpulainen S, Kiviranta L, Carlsson T, Muurinen A, Svensson D, Sasamoto H, Yui M, Wersin P, Rosch D (2010) Long-term alteration of bentonite in the presence of metallic iron. // POSIVA.Working Report 2010-71. 98 pGoogle Scholar
  29. 29.
    Laine H, Karttunen P (2010) Long-term stability of bentonite: a literature review (working report 2010–53), Olkiluoto, Posiva OY, Finland, 132 pGoogle Scholar
  30. 30.
    Lavrynenko OM, Korol YaD, Netreba SV. Prokopenko VA (2010) Khimiia, fizyka ta tekhnolohiia poverkhni, Т. 1, № 3, pp 338–342Google Scholar
  31. 31.
    Lewis DG (1997) Adv Geoecol 30:345–372Google Scholar
  32. 32.
    Meunier A, Velde B, Griffault L (1998) Clay Miner 33:187–196ADSCrossRefGoogle Scholar
  33. 33.
    NUMO. Proceedings of the International Workshop on Bentonite-Cement Interaction in Repository Environments 14-16 April 2004, Tokyo, Japan. NUMO Technical Report No. NUMO-TR-04-05Google Scholar
  34. 34.
    Pettersson S, Lönnerberg B (2008) International conference underground disposal unit design & emplacement processes for a deep geological repository. 6-18 June 2008, Prague, pp (20)1–12Google Scholar
  35. 35.
    Project Opalinus Clay Safety Report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste. Technical report 02–05. Wettingen: NAGRA, 2002. 472 pGoogle Scholar
  36. 36.
    Ph R, Genin J-MR (1997) Corros Sci 39:539–553ADSCrossRefGoogle Scholar
  37. 37.
    Rodriguez MA (2014) JOM 66(3):503–525CrossRefGoogle Scholar
  38. 38.
    Samper J, Lu C, Montenegro L (2008) PhysChemEarth 33:306–316Google Scholar
  39. 39.
    Schwertmann U, Cornell RM (2000) Compl. Rev. and Ext. Ed. Wiley-VCH, Weinheim, p 185Google Scholar
  40. 40.
    Schwertmann U, Fechter H (1994) Clay Miner,. V 29:87–92ADSCrossRefGoogle Scholar
  41. 41.
    Shestopalov VM, Shybetskyi IuA, Proskura MI, Zinkevich LI, Temny RG (2016) International approaches for nuclear waste disposal in geological formations: geological challenges in radioactive waste isolation—fifth worldwide review. Faybishenko B, Birkholzer J, Sassani D, Swift P, editors, LBNL-1006984, doi: https://doi.org/10.2172/1353043
  42. 42.
    SKB. Long-Term Safety for KBS-3 Repositories at Forsmark and Laxemar – a First Evaluation (Main Report of the SR-Can Project). SKB Technical Report TR-06-09. Svensk Kärnbränslehantering AB, Stockholm, Sweden. 2006Google Scholar
  43. 43.
    Smart NR, Blackwood DJ, Werme LO (2001) The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters. SKB Technical Report TR-01-22; Smart RN, Rance AP, Werme LO (2004) MRS Symp Proc 807: 441–446Google Scholar
  44. 44.
    Genin J-MR, Abdelmoula M, Ch R, Ch U (2006) CRGeosci 338:402–419ADSGoogle Scholar
  45. 45.
    Stammoze D, Vokal A (2012) Preliminary interpretation of experimental results on gas generation. FORGE Report D2.3-R, 34 pGoogle Scholar
  46. 46.
    Simon L, François M, Refait P, Renaudin G et al (2003) Sol St Sci 5(2):327–334CrossRefGoogle Scholar
  47. 47.
    Tamura H (2008) Corros Sci,. V 50:1872–1883CrossRefGoogle Scholar
  48. 48.
    Taniguchi N, Honda A, Ishikawa H (1998) MRS Symp Proc 506:495–501CrossRefGoogle Scholar
  49. 49.
    The management system for the disposal of radioactive waste, 2008, IAEA safety standards series N°. GS-G-3.4, ViennaGoogle Scholar
  50. 50.
    Tronc E, Belleville P, Jolivet JP, Livage J (1992) Langmuir 8:313–319CrossRefGoogle Scholar
  51. 51.
    Tripathy S, Thomas HR, Stratos P (2017) Geosciences 7(3):53–57CrossRefGoogle Scholar
  52. 52.
    Trolard F (2006) Compt Rendus Geosci 338:1158–1166ADSCrossRefGoogle Scholar
  53. 53.
    Tsutomu S, Takashi M, Hiroshi I, Toshihiko O (1995) Mater Res Soc Symp roc 353:239–246Google Scholar
  54. 54.
    Turnbull A (2009) A review of the possible effects of hydrogen on lifetime of carbon steel nuclear waste canisters. Technical Report 09–04, Nagra, Wettingen, 51 pGoogle Scholar
  55. 55.
    Pozas R, Ocana M, Morales MP, Serna CJ (2002) J Coll Interf Sci 54:87–94ADSCrossRefGoogle Scholar
  56. 56.
    Wersin P, Birgersson M, Olsson S, Karnland O, Snellman M (2007) Impact of corrosion-derived iron on the bentonite buffer within the KBS-3H disposal concept – the Olkiluoto Site as Case Study, POSIVA. Working Report 2007-11, 78 рGoogle Scholar
  57. 57.
    Wersin P, Johnson LH, McKinley IG (2006) Phys Chem Earth Parts A/B/C 32(8–14):780–788Google Scholar
  58. 58.
    Wilson J, Cressey G, Cressey B, Cuadros J, Vala Ragnarsdottir K, Savage D, Shibata M (2006) Geochim Cosmochim Acta 70:323–336ADSCrossRefGoogle Scholar
  59. 59.
    Xu QF, Wang W, Pang XL et al (2014) Corrosion Eng Sci Technol. 49(6):480–484Google Scholar
  60. 60.
    Yoshikawa H, Gunji E, Tokuda M (2008) J Nucl Mater 379:112–117ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. H. Shabalin
    • 1
  • O. M. Lavrynenko
    • 1
    • 2
  • O. Yu. Pavlenko
    • 2
  1. 1.State Institution “Institute of Environmental Geochemistry of NAS of Ukraine”KyivUkraine
  2. 2.I.M. Frantsevych Institute of Material Science Problems of NAS of UkraineKyivUkraine

Personalised recommendations