Advertisement

Nanoscale Investigation of Porous Structure in Adsorption-Desorption Cycles in the MgO-Al2O3 Ceramics

  • H. KlymEmail author
  • A. Ingram
  • R. Szatanik
  • I. Hadzaman
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

Investigations of pores in nanoscale level in the humidity-sensitive MgO-Al2O3 ceramics sintered at 1400 °C for 2 hours were performed using modified positron annihilation lifetime spectroscopy method. It is shown that in the expansion of spectra into four components, it is possible to estimate the nanopore sizes and to study the processes occurring in them. It was established that the nanopores fraction with a radius of ~1.5 nm is an order of magnitude higher than the proportion of pores with a radius of ~ 0.3 nm, in which also the ortho-positronium annihilation in adsorbed water occurs.

Keywords

Ceramics Positron annihilation Nanopores Modification Humidity-sensitivity 

Notes

Acknowledgments

H. Klym thanks Ministry of Education and Science of Ukraine for support. The authors thank Prof. O. Shpotyuk for discussion.

References

  1. 1.
    Kulwicki BM (1991) Humidity sensors. J Am Ceram Soc 74(4):697–708.  https://doi.org/10.1111/j.1151-2916.1991.tb06911.x CrossRefGoogle Scholar
  2. 2.
    Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3(4):274–295.  https://doi.org/10.1166/sl.2005.045 ADSCrossRefGoogle Scholar
  3. 3.
    Bearzotti A, Bertolo JM, Innocenzi P, Falcaro P, Traversa E (2004) Humidity sensors based on mesoporous silica thin films synthesised by block copolymers. J Eur Ceram Soc 24(6):1969–1972.  https://doi.org/10.1016/S0955-2219(03)00521-1 CrossRefGoogle Scholar
  4. 4.
    Hadzaman I, Klym H, Shpotuyk O, Brunner M (2010) Temperature sensitive spinel-type ceramics in thick-film multilayer performance for environment sensors. Acta Physica Polonica-Series A 117(1):234–237. http://przyrbwn.icm.edu.pl/APP/PDF/117/a117z148.pdf CrossRefGoogle Scholar
  5. 5.
    Rittersma ZM, Splinter A, Bödecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sens Actuators B Chem 68(1–3):210–217.  https://doi.org/10.1016/S0925-4005(00)00431-7 CrossRefGoogle Scholar
  6. 6.
    Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5):7881–7939.  https://doi.org/10.3390/s140507881 CrossRefGoogle Scholar
  7. 7.
    Gusmano G, Montesperelli G, Traversa E (1993) Microstructure and electrical properties of MgAl2O4 thin film for humidity sensors. J Am Ceram Soc 76:743–750.  https://doi.org/10.1111/j.1151-2916.1993.tb03669.x CrossRefGoogle Scholar
  8. 8.
    Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sensors Actuators 23:135–156.  https://doi.org/10.1016/0925-4005(94)01268-M CrossRefGoogle Scholar
  9. 9.
    Gusmano G, Montesperelli G, Nunziante P, Traversa E (1993) Study of the conduction mechanism of MgAl2O4 at different environmental humidities. Electrochim Acta 38(17):2617–2621.  https://doi.org/10.1016/0013-4686(93)80160-2 CrossRefGoogle Scholar
  10. 10.
    Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29.  https://doi.org/10.1016/S1359-6454(99)00285-2 CrossRefGoogle Scholar
  11. 11.
    Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22(22):4634–4667.  https://doi.org/10.1002/adfm.201200591 CrossRefGoogle Scholar
  12. 12.
    Dillon SJ, Harmer MP (2007) Multiple grain boundary transitions in ceramics: a case study of alumina. Acta Mater 55(15):5247–5254.  https://doi.org/10.1016/j.actamat.2007.04.051 CrossRefGoogle Scholar
  13. 13.
    Weaver PM, Cain MG, Stewart M, Anson A, Franks J, Lipscomb IP, McBride JP, Zheng D, Swingler J (2012) The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric field smart materials and structures. Smart Mater Struct 21(4):045012.  https://doi.org/10.1088/0964-1726/21/4/045012 ADSCrossRefGoogle Scholar
  14. 14.
    Armatas GS, Salmas CE, Louloudi MG, Androutsopoulos P, Pomonis PJ (2003) Relationships among pore size, connectivity, dimensionality of capillary condensation, and pore structure tortuosity of functionalized mesoporous silica. Langmuir 19:3128–3136.  https://doi.org/10.1021/la020261h CrossRefGoogle Scholar
  15. 15.
    Kashi MA, Ramazani A, Abbasian H, Khayyatian A (2012) Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization. Sensors Actuators A 174:69–74.  https://doi.org/10.1016/j.sna.2011.11.033 CrossRefGoogle Scholar
  16. 16.
    Vakiv M, Hadzaman I, Klym H, Shpotyuk O, Brunner M (2011) Multifunctional thick-film structures based on spinel ceramics for environment sensors. J Phys Conf Ser 289(1):012011.  https://doi.org/10.1088/1742-6596/289/1/012011 CrossRefGoogle Scholar
  17. 17.
    Klym H, Hadzaman I, Shpotyuk O, Ingram A (2018) Grain porous structure and exploitation properties of humidity-sensitive magnesium aluminate spinel-type ceramics. Springer Proc Phys 214:499–519.  https://doi.org/10.1007/978-3-319-92567-7_32 CrossRefGoogle Scholar
  18. 18.
    Wang W, Fu Z, Wang H, Yuan R (2002) Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J Eur Ceram Soc 22(7):1045–1049.  https://doi.org/10.1016/S0955-2219(01)00424-1 CrossRefGoogle Scholar
  19. 19.
    Klym H, Hadzaman I, Shpotyuk O (2015) Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO-Al2O3 ceramics. Mater Sci 21(1):92–95.  https://doi.org/10.5755/j01.ms.21.1.5189 CrossRefGoogle Scholar
  20. 20.
    Filipecki J, Ingram A, Klym H, Shpotyuk O, Vakiv M (2007) Water-sensitive positron-trapping modes in nanoporous magnesium aluminate ceramics. J Phys Conf Ser 79(1):012015.  https://doi.org/10.1088/1742-6596/79/1/012015 CrossRefGoogle Scholar
  21. 21.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V (2016) Water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics: the PAL spectroscopy study. Nanoscale Res Lett 11(1):1.  https://doi.org/10.1186/s11671-016-1352-6 CrossRefGoogle Scholar
  22. 22.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Chalyy D (2018) Water-sorption effects near grain boundaries in modified MgO-Al2O3 ceramics tested with positron-positronium trapping algorithm. Acta Phys Pol A 133(4):864–868.  https://doi.org/10.12693/APhysPolA.133.864 CrossRefGoogle Scholar
  23. 23.
    Klym H, Ingram A, Hadzaman I, Shpotyuk O (2014) Evolution of porous structure and free-volume entities in magnesium aluminate spinel ceramics. Ceram Int 40(6):8561–8567.  https://doi.org/10.1016/j.ceramint.2014.01.070 CrossRefGoogle Scholar
  24. 24.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Hotra O, Kostiv Y (2016) Nanostructural free-volume effects in humidity-sensitive MgO-Al2O3 ceramics for sensor applications. J Mater Eng Perform 25(3):866–873.  https://doi.org/10.1007/s11665-016-1931-9 CrossRefGoogle Scholar
  25. 25.
    Sommers A, Wang Q, Han X, T’Joen C, Park Y, Jacobi A (2010) Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems – a review. Appl Therm Eng 30(11-12):1277–1291.  https://doi.org/10.1016/j.applthermaleng.2010.02.018 CrossRefGoogle Scholar
  26. 26.
    Asami K, Mitani S, Fujimori H, Ohnuma S, Masumoto T (1999) Characterization of Co-Al-O magnetic thin films by combined use of XPS, XRD and EPMA. Surf Interface Anal 28:250–253.  https://doi.org/10.1002/(SICI)1096-9918(199908)28:1<250::AID-SIA587>3.0.CO;2-T CrossRefGoogle Scholar
  27. 27.
    Asami K, Ohnuma T (1998) Masumoto XPS and X-ray diffraction characterization of thin Co-Al-N alloy films prepared by reactive sputtering deposition. Surf Interface Anal 26:659–666.  https://doi.org/10.1002/(SICI)1096-9918(199808)26:9<659::AID-SIA412>3.0.CO;2-Z CrossRefGoogle Scholar
  28. 28.
    Moreira EA, Coury JR (2004) The influence of structural parameters on the permeability of ceramic foams. Braz J Chem Eng 21(1):23–33.  https://doi.org/10.1590/S0104-66322004000100004 CrossRefGoogle Scholar
  29. 29.
    Ferraris E, Vleugels J, Guo Y, Bourell D, Kruth JP, Lauwers B (2016) Shaping of engineering ceramics by electro, chemical and physical processes. CIRP Ann 65(2):761–784.  https://doi.org/10.1016/j.cirp.2016.06.001 CrossRefGoogle Scholar
  30. 30.
    Chakraverty S, Mitra S, Mandal K, Nambissan PMG, Chattopadhyay S (2005) Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2. Phys Rev B 71(2):024115.  https://doi.org/10.1103/PhysRevB.71.024115 ADSCrossRefGoogle Scholar
  31. 31.
    Tuomisto F, Makkonen I (2013) Defect identification in semiconductors with positron annihilation: experiment and theory. Rev Mod Phys 85(4):1583.  https://doi.org/10.1103/RevModPhys.85.1583 ADSCrossRefGoogle Scholar
  32. 32.
    Krause-Rehberg R, Leipner HS (1999) Positron annihilation in semiconductors. Defect studies. Springer, Berlin/Heidelberg/New York, p 378CrossRefGoogle Scholar
  33. 33.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I (2012) Water-sorption processes in nanostructured ceramics for sensor electronics studied with positron annihilation instruments. 28th international conference on microelectronics (MIEL), p 155–158.  https://doi.org/10.1109/MIEL.2012.6222821
  34. 34.
    Klym H, Ingram A, Shpotyuk O, Filipecki J (2010) PALS as characterization tool in application to humidity-sensitive electroceramics. 27th international conference on microelectronics proceedings (MIEL), p 239–242.  https://doi.org/10.1109/MIEL.2010.5490492
  35. 35.
    Goworek T (2002) Comments on the relation: positronium lifetime–free volume size parameters of the Tao–Eldrup model. Chem Phys Lett 366(1-2):184–187.  https://doi.org/10.1016/S0009-2614(02)01569-5 ADSCrossRefGoogle Scholar
  36. 36.
    Tao SJ (1972) Positronium annihilation in molecular substance. J Chem Phys 56(11):5499–5510.  https://doi.org/10.1063/1.1677067 ADSCrossRefGoogle Scholar
  37. 37.
    Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58.  https://doi.org/10.1016/0301-0104(81)80307-2 CrossRefGoogle Scholar
  38. 38.
    Klym H, Vasylchyshyn I, Hadzaman I, Dunets R (2018) Porous structure and exploitation properties of nanostructured MgO-Al2O3 ceramics technologically modified by time-temperature regimes. 38th international conference on Electronics and Nanotechnology (ELNANO), p 142–145.  https://doi.org/10.1109/ELNANO.2018.8477514
  39. 39.
    Shpotyuk O, Calvez L, Petracovschi E, Klym H, Ingram A, Demchenko P (2014) Thermally-induced crystallization behaviour of 80GeSe2-20Ga2Se3 glass as probed by combined X-ray diffraction and PAL spectroscopy. J Alloys Compd 582:323–327.  https://doi.org/10.1016/j.jallcom.2013.07.127 CrossRefGoogle Scholar
  40. 40.
    Klym H, Ingram A, Shpotyuk O, Calvez L, Petracovschi E, Kulyk B, Serkiz R, Szatanik R (2015) ‘Cold’ crystallization in nanostructurized 80GeSe2-20Ga2Se3 glass. Nanoscale Res Lett 10(1):1–8.  https://doi.org/10.1186/s11671-015-0775-9 CrossRefGoogle Scholar
  41. 41.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V, Hotra O, Popov AI (2016) Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temp Phys 42(7):601–605.  https://doi.org/10.1063/1.4959021 ADSCrossRefGoogle Scholar
  42. 42.
    Klym H, Shpotyuk O, Ingram A, Karbovnyk I (2018) Modified positron annihilation lifetime spectroscopy method for investigation of nanomaterials with advanced porosity. 38th international conference on Electronics and Nanotechnology (ELNANO), p 134–137.  https://doi.org/10.1109/ELNANO.2018.8477443
  43. 43.
    Klym HI, Ivanusa AI, Kostiv YM, Chalyy DO, Tkachuk TI, Dunets RB, Vasylchyshyn II (2017) Methodology and algorithm of multicomponent analysis of positron annihilation spectra for nanostructured functional materials. J Nano-Electron Phys 9(3):03037-1–03037-6.  https://doi.org/10.21272/jnep.9(3).03037 CrossRefGoogle Scholar
  44. 44.
    Klym H, Karbovnyk I, Vasylchyshyn I (2016) Multicomponent positronium lifetime modes to nanoporous study of MgO-Al2O3 ceramics. 13th international conference on modern problems of radio engineering, Telecommunications and Computer Science (TCSET), p 406–408.  https://doi.org/10.1109/TCSET.2016.7452071
  45. 45.
    Giebel D, Kansy J (2011) A new version of LT program for positron lifetime spectra analysis. Mater Sci Forum 666:138–141.  https://doi.org/10.4028/www.scientific.net/MSF.666.138 CrossRefGoogle Scholar
  46. 46.
    Kansy J (2001) Programs for positron lifetime analysis adjusted to the PC windows environment. Mater Sci Forum 363:652–654CrossRefGoogle Scholar
  47. 47.
    Kansy J, Consolati G, Dauwe C (2000) Positronium trapping in free volume of polymers. Radiat Phys Chem 58(5-6):427–431.  https://doi.org/10.1016/S0969-806X(00)00195-X ADSCrossRefGoogle Scholar
  48. 48.
    Kansy J (2000) Positronium trapping in free volume of polymers. Radiat Phys Chem 58:427–431.  https://doi.org/10.1016/S0969-806X(00)00195-X ADSCrossRefGoogle Scholar
  49. 49.
    Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res, Sect A 374(2):235–244.  https://doi.org/10.1016/0168-9002(96)00075-7 ADSCrossRefGoogle Scholar
  50. 50.
    Ghosh S, Nambissan PMG, Bhattacharya R (2004) Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystaline MgMn0.1Fe1.9-xO4. Phys Lett A 325:301–308.  https://doi.org/10.1016/j.physleta.2004.03.062. Get rights and contentADSCrossRefGoogle Scholar
  51. 51.
    Nambissan PMG, Upadhyay C, Verma HC (2003) Positron lifetime spectroscopic studies of nanocrystalline ZnFe2O4. J Appl Phys 93:6320.  https://doi.org/10.1063/1.1569973 ADSCrossRefGoogle Scholar
  52. 52.
    Guo Z, Liang X, Pereira T, Scaffaro R, Hahn HT (2007) CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos Sci Technol 67(10):2036–2044.  https://doi.org/10.1016/j.compscitech.2006.11.017 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lviv Polytechnic National UniversityLvivUkraine
  2. 2.Opole University of TechnologyOpolePoland
  3. 3.Drohobych State Pedagogical UniversityDrohobychUkraine

Personalised recommendations