Preparation and Complex Study of Thick Films Based on Nanostructured Cu0.1Ni0.8Co0.2Mn1.9O4 and Cu0.8Ni0.1Co0.2Mn1.9O4 Ceramics

  • H. Klym
  • Yu Kostiv
  • I. Hadzaman
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)


A complex investigation of structural and electrical properties in addition to the peculiarities of the ageing process in thick films based on nanostructured Cu0.1Ni0.8Co0.2Mn1.9O4 and Cu0.8Ni0.1Co0.2Mn1.9O4 ceramics were performed. Basic bulk ceramics and thick films were characterized by X-ray diffraction and scanning electron microscopy analysis. Thick films based on Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics showed a higher density and microstructure homogeneity over those based on Cu0.8Ni0.1Co0.2Mn1.9O4 ceramics. The main electrical parameters of planar thick films were determined. Depending on the chemical composition of ceramics, the prepared thick films showed the resistivities within the range of 2÷40 Ω·m, being approximately 1–2 orders of magnitude larger than those of disc thermistor elements. The values of constant B25/85 ranged from 2980 to 3690 K. The thermal “shock” effect in the initial stage of isothermal exposure at 170 °C with future stabilization of electrical resistance at this level up to the final degradation test was revealed. It is shown that sensitivity to high temperature and the stabilization of electrical parameters in the thick films studied can be used for preparation of sensor components based on thick films for micro- and nanoelectronics.


Thick films Nanostructures Ceramics Ageing Kinetics 



H. Klym and Yu. Kostiv thank the Ministry of Education and Science of Ukraine for support. H. Klym thanks Prof. O. Shpotyuk for discussion.


  1. 1.
    Guillemet-Fritsch S, Chanel C, Sarrias J, Bayonne S, Rousset A, Alcobe X, Sarriòn MM (2000) Structure, thermal stability and electrical properties of zinc manganites. Solid State Ionics 128(1–4):233–242. CrossRefGoogle Scholar
  2. 2.
    Hosseini M (2000) The effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors. Ceram Int 26(3):245–249. CrossRefGoogle Scholar
  3. 3.
    De Torres HB, Rensch C, Fischer M, Schober A, Hoffmann M, Müller J (2010) Thick film flow sensor for biological microsystems. Sensors Actuators A Phys 160(1–2):109–115. CrossRefGoogle Scholar
  4. 4.
    Gebhardt S, Seffner L, Schlenkrich F, Schönecker A (2007) PZT thick films for sensor and actuator applications. J Eur Ceram Soc 27(13–15):4177–4180. CrossRefGoogle Scholar
  5. 5.
    Huang J, Hao Y, Lin H, Zhang D, Song J, Zhou D (2003) Preparation and characteristic of the thermistor materials in the thick-film integrated temperature–humidity sensor. Mater Sci Eng B 99(1–3):523–526. CrossRefGoogle Scholar
  6. 6.
    Schmidt R, Basu A, Brinkman AW (2004) Production of NTCR thermistor devices based on NiMn2O4+ δ. J Eur Ceram Soc 24(6):1233–1236. CrossRefGoogle Scholar
  7. 7.
    Jagtap S, Rane S, Mulik U, Amalnerkar D (2007) Thick film NTC thermistor for wide range of temperature sensing. Microelectron Int 24(2):7–13. CrossRefGoogle Scholar
  8. 8.
    Feteira A (2009) Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc 92(5):967–983. CrossRefGoogle Scholar
  9. 9.
    Martínez-Cisneros CS, Ibáñez-García N, Valdés F, Alonso J (2007) Miniaturized total analysis systems: integration of electronics and fluidics using low-temperature co-fired ceramics. Anal Chem 79(21):8376–8380. CrossRefGoogle Scholar
  10. 10.
    Ai L, Jiang J (2010) Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Curr Appl Phys 10(1):284–288. ADSCrossRefGoogle Scholar
  11. 11.
    Shpotyuk O, Balitska V, Brunner M, Hadzaman I, Klym H (2015) Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics. Phys B Condens Matter 459:116–121. ADSCrossRefGoogle Scholar
  12. 12.
    Klym H, Ingram A, Shpotyuk O, Filipecki J (2010) PALS as characterization tool in application to humidity-sensitive electroceramics. 27th international conference on microelectronics proceedings (MIEL) 239–242.
  13. 13.
    Klym H, Hadzaman I, Shpotyuk O (2015) Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO-Al2O3 ceramics. Mater Sci 21(1):92–95. CrossRefGoogle Scholar
  14. 14.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Hotra O, Kostiv Y (2016) Nanostructural free-volume effects in humidity-sensitive MgO-Al2O3 ceramics for sensor applications. J Mater Eng Perform 25(3):866–873. CrossRefGoogle Scholar
  15. 15.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V (2016) Water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics: the PAL spectroscopy study. Nanoscale Res Lett 11(1):1. CrossRefGoogle Scholar
  16. 16.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Chalyy D (2018) Water-sorption effects near grain boundaries in modified MgO-Al2O3 ceramics tested with positron-positronium trapping algorithm. Acta Phys Pol A 133(4):864–868. CrossRefGoogle Scholar
  17. 17.
    Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V, Hotra O, Popov AI (2016) Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temp Phys 42(7):601–605. ADSCrossRefGoogle Scholar
  18. 18.
    Brunets I, Mrooz O, Shpotyuk O, Altenburg H (2004) Thick-film NTC thermistors based on spinel-type semiconducting electroceramics. 24th International Conference on Microelectronics, (MIEL) 2:503–506.
  19. 19.
    Klym H, Hadzaman I, Ingram A, Shpotyuk O (2013) Multilayer thick-film structures based on spinel ceramics. Can J Phys 92(7/8):822–826. ADSCrossRefGoogle Scholar
  20. 20.
    Klym H, Hadzaman I, Shpotyuk O, Brunner M (2014) Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Res Lett 9(1):149. ADSCrossRefGoogle Scholar
  21. 21.
    Klym H, Hadzaman I, Shpotyuk O, Fu Q, Luo W, Deng J (2013) Integrated thick-film pi-p+ structures based on spinel ceramics. Solid State Phenom 200:156–161. CrossRefGoogle Scholar
  22. 22.
    Vakiv M, Hadzaman I, Klym H, Shpotyuk O, Brunner M (2011) Multifunctional thick-film structures based on spinel ceramics for environment sensors. J Phys Conf Ser 289(1):012011. CrossRefGoogle Scholar
  23. 23.
    Hadzaman I, Klym H, Shpotuyk O, Brunner M (2010) Temperature sensitive spinel-type ceramics in thick-film multilayer performance for environment sensors. Acta Phys Pol A 117(1):234–237. CrossRefGoogle Scholar
  24. 24.
    Rodriguez-Carvajal J (2001) Recent developments of the program FULLPROF, commission on powder diffraction (IUCr). Newsletter 26:12–19Google Scholar
  25. 25.
    Roisnel T, Rodriguez-Carvajal J (2000) WinPLOTR: a windows tool for powder diffraction patterns analysis, materials, science forum. Proc. of the Seventh European Powder Diffraction Conference, BarcelonaGoogle Scholar
  26. 26.
    Mrooz O, Hadzaman I, Vakiv M, Shpotyuk O, Plewa J, Altenburg H, Uphoff H (2002) Aging of copper-nickel-cobalt manganite NTC thermistors. 23rd International Conference on Microelectronics (MIEL) 1:375–378.
  27. 27.
    Bodak O, Akselrud L, Demchenko P, Kotur B, Mrooz O, Hadzaman I, Pekhnyo V (2002) Microstructure, crystal structure and electrical properties of Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics obtained at different sintering conditions. J Alloys Compd 347(1–2):14–23. CrossRefGoogle Scholar
  28. 28.
    Klym H (2017) Structural, electrical properties and degradation processes in the Cu-and Ni-enriched thick-film elements for sensor electronics. 37th International Conference on Electronics and Nanotechnology (ELNANO):178–181.
  29. 29.
    Nenov T, Nenova Z (2002) Multifunctional temperature sensor. 23rd International Conference on Microelectronics (MIEL) 1:257–260.
  30. 30.
    Klym H, Balitska V, Shpotyuk O, Hadzaman I (2014) Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectron Reliab 54(12):2843–2848. CrossRefGoogle Scholar
  31. 31.
    Shpotyuk O, Brunner M, Hadzaman I, Balitska V, Klym H (2016) Analytical description of degradation-relaxation transformations in nanoinhomogeneous spinel ceramics. Nanoscale Res Lett 11(1):499. ADSCrossRefGoogle Scholar
  32. 32.
    Shpotyuk O, Kovalskiy A, Mrooz O, Shpotyuk L, Pechnyo V, Volkov S (2001) Technological modification of spinel-based CuxNi1–x–yCo2yMn2–yO4 ceramics. J Eur Ceram Soc 21(10–11):2067–2070. CrossRefGoogle Scholar
  33. 33.
    De Bast J, Gilard P (1963) Variation of the viscosity of glass and relaxation of stresses during stabilization. Phys Chem Glasses 4:117–128Google Scholar
  34. 34.
    Klym H, Katerynchuk I (2012) High-reliable temperature systems for sensor electronics. International Conference on Modern Problems of Radio Engineering Telecommunications and Computer Science (TCSET):490.
  35. 35.
    Hadzaman I, Klym H, Shpotyuk O (2014) Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. Int J Nanotechnol 11(9–10-11):843–853. CrossRefGoogle Scholar
  36. 36.
    Klym H, Berezko O, Vasylchyshyn I, Kostiv Y (2018) Intelligent cyber-physical computer system and database for microclimate monitoring based on nanostructured sensors. Acta Technica CSAV 63(3):447–458Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. Klym
    • 1
  • Yu Kostiv
    • 1
  • I. Hadzaman
    • 2
  1. 1.Lviv Polytechnic National UniversityLvivUkraine
  2. 2.Drohobych State Pedagogical UniversityDrohobychUkraine

Personalised recommendations