Advertisement

The Effect of Ultrasonic Treatment on the Physical–Chemical Properties of the ZnO/MoO3 System

  • V. O. ZazhigalovEmail author
  • O. V. Sachuk
  • O. A. Diyuk
  • N. S. Kopachevska
  • V. L. Starchevskyy
  • M. M. Kurmach
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

The influence of the ultrasonic treatment (UST) of the ZnO/MoO3 oxide system with atomic ratios of Zn/Mo = 15:85, 25:75, 50:50, and 75:25 on their properties was investigated. Using X-ray diffraction (XRD) analysis, it was found that in the sonochemical activation process, the phase transformation in molybdenum oxide, the formation of molybdenum suboxides (Mo4O11, Mo8O23), and the triclinic modification of the zinc molybdate α-ZnMoO4 occurred. The structure and morphology of ZnMoO4, which were characterized by transmission electron microscopy and scanning electron microscopy analyses, show the formation of nanodispersed needle-like crystals. It was found that as a result of sonochemical treatment, the grinding and increase in the specific surface area of the compositions take place. The samples obtained after UST demonstrate very promising results in the oxidative dehydrogenation of ethanol to acetaldehyde and the treated composition with a ratio of Zn/Mo = 50:50 permits an acetaldehyde yield equal to 94% to be obtained at a reaction temperature of 255 °C.

Keywords

ZnO–MoO3 system Zinc molybdate Composition Sonochemical activation Nanoparticles Catalyst 

Notes

Acknowledgments

This work was financially supported by NASU Programs: Fundamental Research “New Functional Substances and Materials for Chemical Engineering” (project 7-17/18) and Program for Young Scientists (project 41: “Synthesis of new nanodispersed photocatalysts of environmental protection processes”).

References

  1. 1.
    Bang JH, Suslick KS (2010) Application of ultrasound to the synthesis of nanostructural materials. Adv Mater 22:1039–1059CrossRefGoogle Scholar
  2. 2.
    Chatel G (2018) How sonochemistry contributes to green chemistry? Ultrasonics Chem 40:117–122Google Scholar
  3. 3.
    Mason TJ, Lorimer JP (2002) Applied sonochemistry: uses of power ultrasound in chemistry and processing. Copyright, Weinheim, p 293CrossRefGoogle Scholar
  4. 4.
    Yusof NSM, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M (2016) Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason Sonochem 29:568–576CrossRefGoogle Scholar
  5. 5.
    Leong T, Ashokkumar M, Kentish S (2011) The fundamentals of power ultrasound – a review. Acoustics Australia 39(2):54–63Google Scholar
  6. 6.
    Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29(1):295–326ADSCrossRefGoogle Scholar
  7. 7.
    Mason TJ (1997) Ultrasound in synthetic organic chemistry. Chem Soc Rev 26:443–451CrossRefGoogle Scholar
  8. 8.
    Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38(4):1215–1249CrossRefGoogle Scholar
  9. 9.
    Choi GK, Kim JR, Yoon SH, Hong KS (2007) Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J Eur Ceram Soc 27:3063–3067CrossRefGoogle Scholar
  10. 10.
    Ryu JH, Koo SM, Yoon JW, Lim CS, Shim KB (2006) Synthesis of nanocrystalline MMoO4 (M = Ni, Zn) phosphors via a citrate complex route assisted by microwave irradiation and their photoluminescence. Mater Lett 60:1702–1705CrossRefGoogle Scholar
  11. 11.
    Zhang G, Yu S, Yang Y, Jiang W, Zhang S, Huang B (2010) Synthesis, morphology and phase transition of the zinc molybdates ZnMoO4×0.8H2O/α-ZnMoO4/ZnMoO4 by hydrothermal method. J Cryst Growth 312:1866–1874ADSCrossRefGoogle Scholar
  12. 12.
    Li Y, Weisheng G, Bo B, Kaijie G (2009) Yeast-directed hydrothermal synthesis of ZnMoO4 hollow microspheres and its photocatalytic degradation of auramine O. International conference on energy and environment technology IEEE.  https://doi.org/10.1109/ICEET.2009.631
  13. 13.
    Ramezani M, Hosseinpour-Mashkani SM, Sobhani-Nasab A, Estarki HG (2015) Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J Mater Sci Mater Electron 26(10):7588–7594CrossRefGoogle Scholar
  14. 14.
    Sotani N, Suzuki T, Nakamura K, Eda K, Hasegawa S (2001) Change in bulk and surface structure of mixed MoO3-ZnO oxide by heat treatment in air and in hydrogen. J Mater Sci 36:703–713ADSCrossRefGoogle Scholar
  15. 15.
    Nakamura K, Eda K, Hasegawa S, Sotani N (1999) Reactivity for isomerization of 1-butene on the mixed MoO3–ZnO oxide catalyst. Appl Catal A Gen 178(2):167–176CrossRefGoogle Scholar
  16. 16.
    Maezawa A, Okamoto Y, Imanaka T (1987) Physicochemical characterization of ZnO/Al2O3 and ZnO–MoO3/Al2O3 catalysts. J Chem Soc Faraday Trans 1 Phys Chem Condensed Phases 83(3):665–674Google Scholar
  17. 17.
    Sachuk OV, Zazhigalov VO, Kuznetsova LS, Tsiba MM (2016) Properties of Zn-Mo oxide systems, synthesized by mechano-chemical processes. Chem Phys Surface Technol 7(3):309–321Google Scholar
  18. 18.
    Zazhigalov VA, Sachuk EV, Kopachevskaya NS, Bacherikova IV, Wieczorek-Ciurowa K, Shcherbakov SN (2016) Mechanochemical synthesis of nanodispersed compounds in the ZnO–MoO3 system. Teor Exp Chem 52(2):97–103CrossRefGoogle Scholar
  19. 19.
    Sachuk O, Zazhigalov V, Kobuley O (2016) Mechanochemical activation and photocatalytic activity of oxide zinc-molybdenum composition. NaUKMA 183:26–30Google Scholar
  20. 20.
    Pat.116067 Ukraine, MPK C01G 39/02, C01G 9/02. Patent for utility model Mechanochemical method of obtaining nanosized B-ZnO4 rods // Sachuk O.V., Zazhigalov, V.O.; The owner is the Institute of Sorption and Endoecology Problems of the National Academy of Sciences of Ukraine - № u 2016 10715; stated 25.10.2016; posted 10.05.2017. Bul №Google Scholar
  21. 21.
    Zazhigalov VA, Sachuk OV, Diyuk OA, Starchevskyy VL, Kolotilov SV, Sawlowicz Z, Shcherbakov SM, Zakutevskyy OI (2018) The ultrasonic treatment as a promising method of nanosized oxide CeO2-MoO3 composites preparation, vol 214. Springer, Cham, pp 294–309Google Scholar
  22. 22.
    Burch R (1978) Preparation of high surface area reduced molybdenum oxide catalysts. J Chem Soc Faraday Trans 1(74):2982–2990CrossRefGoogle Scholar
  23. 23.
    Ressler T, Jentoft RE, Wienold J, Gunter MM, Timpe O (2000) In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J Phys Chem B 104(6):360–370Google Scholar
  24. 24.
    Lalik E (2011) Kinetic analysis of reduction of MoO3 to MoO2. Catal Today 169:85–92CrossRefGoogle Scholar
  25. 25.
    Słoczynski J, Bobinski W (1991) Autocatalytic effect in the processes of metal oxide reduction. II. Kinetics of molybdenum oxide reduction. J Solid State Chem 92:436–348ADSCrossRefGoogle Scholar
  26. 26.
    Słoczyński J (1995) Kinetics and mechanism of molybdenum (VI) oxide reduction. J Solid State Chem 118:84–92ADSCrossRefGoogle Scholar
  27. 27.
    Schulmeyer WV, Ortner HM (2002) Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Met Hard Mater 20:261–269CrossRefGoogle Scholar
  28. 28.
    Enneti RK, Wolfe TA (2012) Agglomeration during reduction of MoO3. Int J Refract Met Hard Mater 31:47–50CrossRefGoogle Scholar
  29. 29.
    Dang J, Zhang G-H, Chou K-C (2014) Phase transitions and morphology evolutions during hydrogen reduction of MoO3 to MoO2. High Temp. Mater. Proc. 33(4):305–312CrossRefGoogle Scholar
  30. 30.
    Margulis MA (1984) Basics of AcoustoChemistry (chemical reactions in sound fields) // M .: Higher. sch.Google Scholar
  31. 31.
    Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mat 22:1039–1059CrossRefGoogle Scholar
  32. 32.
    Zazhigalov VA, Haber J, Stoch J, Kharlamov AI, Bogutskaya LV, Bacherikova IV, Kowal A (1997) Influence of the mechanochemical treatment on the reactivity of V-containing oxide systems. Solid State Ionics 101–103:1257–1263CrossRefGoogle Scholar
  33. 33.
    Bogutskaya LV, Khalameida SV, Zazhigalov VA, Kharlamov AI, Lyashenko LV, Byl’ OG (1999) Effect of mechanochemical treatment on the structure and physicochemical properties of MoO3. Theor Experim Chem 35(4):242–246CrossRefGoogle Scholar
  34. 34.
    Keereeta Y, Thongtem T, Thongtem S (2014) Effect of medium solvent ratios on morphologies and optical properties of α-ZnMoO4, β-ZnMoO4 and ZnMoO4·0.8H2O crystals synthesized by microwave-hydrothermal/solvothermal method. Superlattice Microst 69:253–264ADSCrossRefGoogle Scholar
  35. 35.
    Karekar SE, Bhanvase BA, Sonawane SH, Deosarkar MP, Pinjari DV, Pandit AB (2015) Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: advantage over conventional method. Chem Eng Process 87:51–59CrossRefGoogle Scholar
  36. 36.
    Pat.117264 Ukraine, MPK C01G 39/02, C01G 9/02. Patent for utility model Sonochemical method for obtaining a nanosized phase of alpha-ZnMoO4 // Sachuk OV, Zazhigalov VO, Starchevskii VL; The owner is the Institute of Sorption and Endoecology Problems of the National Academy of Sciences of Ukraine - № u 2016 12989; stated 20.12.2016; posted 26.06.2017. Bul №12Google Scholar
  37. 37.
    Chiang TH, Yeh HC (2013) The synthesis of α-MoO3 by ethylene glycol. Materials 6:4609–4625ADSCrossRefGoogle Scholar
  38. 38.
    Irmawati R, Shafizah M (2009) The production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int J Basic Appl Sci 9(9):241–244Google Scholar
  39. 39.
    Cavalcante LS, Moraes E, Almeida MAP, Dalmaschio CJ, Batista NC, Varela JA, Longo E, Siu Li M, Andrés J, Beltrán A (2013) A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 54:13–25CrossRefGoogle Scholar
  40. 40.
    Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol 2012:1–6CrossRefGoogle Scholar
  41. 41.
    Gruber H, Krautz E, Fritzer HP, Gatterer K, Popitsch A (1986) Changes of electrical conductivity, magnetic susceptibility, and IR spectra in the ternary system Mon-xWxO3n-1. Phys Status Solidi 98:297–304ADSCrossRefGoogle Scholar
  42. 42.
    Mancheva M, Iordanova R, Kamenova AA, Stoyanova A, Dimitriev Y, Kunev B (2007) Influence of mechanical treatment on morphology of the MoO3 nanocrystals. Nanosci Nanotechnol 7:74–76Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. O. Zazhigalov
    • 1
    Email author
  • O. V. Sachuk
    • 1
  • O. A. Diyuk
    • 1
  • N. S. Kopachevska
    • 1
  • V. L. Starchevskyy
    • 2
  • M. M. Kurmach
    • 3
  1. 1.Institute for Sorption and Problems of Endoecology, National Academy of Sciences of UkraineKyivUkraine
  2. 2.National University «Lviv Polytechnic»LvivUkraine
  3. 3.L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations