Advertisement

New Methacrylic Polymers with Heterocyclic Analogs of Stilbene in Side Chain – Promising Materials for Optoelectronics

  • O. Krupka
  • O. Kharchenko
  • V. Smokal
  • A. Kysil
  • A. Kolendo
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

Organic and polymeric nonlinear optical (NLO) materials have continuously drawn great interest due to their several advantages superior to conventional inorganics, such as large nonlinear optical coefficient, ultrafast response, wide response wave band, high optical damage threshold, and easy combination and modification. Generally, desired NLO materials should exhibit a high NLO property, good optical transparency, and thermal stability. Designs and syntheses of effective chromophores are very important for acquiring desired NLO materials [1].

References

  1. 1.
    Zhang C-Z et al (2010) Significant effect of Bromo substituents on nonlinear optical properties of polymer and chromophores. J Phys Chem B 114:42–48CrossRefGoogle Scholar
  2. 2.
    Gulakova EN et al (2011) Synthesis and structure of styryl-substituted azines. Russ J Organ Chem 47(2):245–252CrossRefGoogle Scholar
  3. 3.
    Liao L, Li Y et al (2014) STM investigation of the photoisomerization and photodimerization of stilbene derivatives on HOPG surface. J Phys Chem C 118:15963–15969CrossRefGoogle Scholar
  4. 4.
    Grad ME, Simu GM et al (2008) Synthesis and colour assessment of some new stilbene azo dyes. Rev Roum Chim 53(2):107–111Google Scholar
  5. 5.
    Budyka M, Oshkin I (2011) Comparative semiempirical and DFT study of styrylnaphthalenes and styrylquinolines and their photocyclization products. Int J Quantum Chem 111:3673–3680Google Scholar
  6. 6.
    Gulakova EN et al (2014) Regiospecific C-N photocyclization of 2-styrylquinolines. J Org Chem 79(12):5533–5537CrossRefGoogle Scholar
  7. 7.
    Budyka MF et al (2010) The effect of substituents in the styryl moiety on the photocyclization of 4-styrylquinoline derivatives. High Energy Chemistry 44(5):404–411CrossRefGoogle Scholar
  8. 8.
    Oshkin V, Budyka M (2010) Quantum_chemical study of the photoisomerization and photocyclization reactions of styrylquinolines: potential energy surfaces. High Energy Chemistry 44(6):472–481CrossRefGoogle Scholar
  9. 9.
    Walko M (2009) Molecular and biomolecular switches, Dissertation, University of GroningenGoogle Scholar
  10. 10.
    Deligeorgiev T, Vasilev A et al (2010) Styryl dyes – synthesis and applications during the last 15 years. Soc Dyers Col, Color Technol 126:55–80Google Scholar
  11. 11.
    Ayaz N et al (2012) Polymers based on methacrylate bearing coumarin side group: synthesis via free radical polymerization, monomer reactivity ratios, dielectric behavior, and thermal stabilities. ISRN Polym Sci 352759:1–13.  https://doi.org/10.5402/2012/352759 CrossRefGoogle Scholar
  12. 12.
    Budyka M, Potashova N (2012) Design of fully photonic molecular logic gates based on the supramolecular bis-styrylquinoline dyad. Nanotechnol Russ 7:280–287CrossRefGoogle Scholar
  13. 13.
    Podeszwa B et al (2007) Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorg Med Chem Lett 17:6138–6141CrossRefGoogle Scholar
  14. 14.
    Mao F, Yan J, Li J et al (2014) New multi-target-directed small molecules against Alzheimer’s disease: a combination of resveratrol and clioquinol. Org Biomol Chem 12:5936–5944CrossRefGoogle Scholar
  15. 15.
    Mekouar K, Mouscadet J-F et al (1998) Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem 41:2846–2857CrossRefGoogle Scholar
  16. 16.
    Budyka M et al (2008) Photoisomerization of 2-styrylquinoline in neutral and protonated forms. High Energy Chem 42(6):446–453CrossRefGoogle Scholar
  17. 17.
    Derkowska-Zielinska B, Skowronski L, Biitseva A et al (2017) Optical characterization of heterocyclic azo dyes containing polymers thin films. Appl Surf Sci 421:361–366.  https://doi.org/10.1016/j.apsusc.2016.12.080 ADSCrossRefGoogle Scholar
  18. 18.
    Krupka O, Smokal V, Derkowska-Zielinska B, et al (2017) Optical and photochemical properties of diarylethylenes. Proceedings of SPIE 10440: 104400C.  https://doi.org/10.1117/12.2278118
  19. 19.
    Derkowska-Zielinska B, Krupka O, Smokal V et al (2016) Optical properties of disperse dyes doped poly(methyl methacrylate). Mol Cryst Liq Cryst 639:87–93.  https://doi.org/10.1080/15421406.2016.1254585 CrossRefGoogle Scholar
  20. 20.
    Smokal V, Czaplicki R, Derkowska B ea (2007) Synthesis and study of nonlinear optical properties of oxazolone containing polymers. Synth Met 157(18–20):708–712.  https://doi.org/10.1016/j.synthmet.2007.07.006 CrossRefGoogle Scholar
  21. 21.
    Derkowska-Zielinska B, Skowronski L, Sypniewska M et al (2018) Functionalized polymers with strong push-pull azo chromophores in side chain for optical application. Opt Mater 85:391–398.  https://doi.org/10.1016/j.optmat.2018.09.008 ADSCrossRefGoogle Scholar
  22. 22.
    Derkowska-Zielinska B, Skowronski L, Kozlowski T et al (2015) Influence of peripheral substituents on the optical properties of heterocyclic azo dyes. Opt Mater 49:325–329.  https://doi.org/10.1016/j.optmat.2015.10.001 ADSCrossRefGoogle Scholar
  23. 23.
    Alfrey TC, Price C (1947) Relative reactivities in vinyl copolymerization. J Polym Sci 2(1):101–106ADSCrossRefGoogle Scholar
  24. 24.
    Kharchenko O et al (2018) Reactivity and polymerisation ability of styrilquinaline containing metacrylic monomers. Chem Chem Technol 12(1):47–52.  https://doi.org/10.23939/chcht12.01.047 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kharchenko O et al (2018) Synthesis and photophysical properties of new styrylquinoline-containing polymers. Mol Cryst Liq Cryst 661:38–44.  https://doi.org/10.1080/15421406.2018.1460236 CrossRefGoogle Scholar
  26. 26.
    Barberis V, Mikroyannidis J (2006) Synthesis and optical properties of aluminum and zinc quinolates through styryl substituent in 2-position. Synth Met 156:865–871.  https://doi.org/10.1016/j.synthmet.2006.05.007 CrossRefGoogle Scholar
  27. 27.
    Derkowska-Zielinska B, Figà V, Krupka O et al (2015) Optical properties of polymethacrylate with styrylquinoline side chains. Proc SPIE 9652:965216.  https://doi.org/10.1117/12.2194840 CrossRefGoogle Scholar
  28. 28.
    Fineman M, Ross S (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5(2):259–265ADSCrossRefGoogle Scholar
  29. 29.
    Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. John Wiley & Sons, New YorkGoogle Scholar
  30. 30.
    Budyka M (2008) Photochemical properties of amino and nitro derivatives of 2- and 4-styrylquinolines and their hydrochlorides. High Energy Chem 42(3):220–226.  https://doi.org/10.1134/S0018143908030065 CrossRefGoogle Scholar
  31. 31.
    Fedus M, Smokal V, Krupka O et al (2011) Synthesis and non-resonant nonlinear optical properties of push-pull side-chain azobenzene polymers. J Nonlinear Opt Phys Mater 20:1–13.  https://doi.org/10.1142/S021886351100584X ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. Krupka
    • 1
  • O. Kharchenko
    • 1
  • V. Smokal
    • 1
  • A. Kysil
    • 1
  • A. Kolendo
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations