Nanoscale Photocatalytic Layers with Titania on Stainless Steel Foil

  • V. Honcharov
  • V. Zazhigalov
  • O. Sanzhak
  • F. Azimov
  • D. Brazhnyk
  • M. Parlinska-Wojtan
  • E. Drzymala
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)


The widespread use of catalytic technologies in industry requires a thorough study of all properties of catalysts. The main requirements for modern catalysts are mechanical strength, thermal stability, activity and selectivity. Catalytic systems deposited on metals and alloys satisfy these requirements [1–6]. An important problem is the structure, quantity and composition of these systems on the support surface. Therefore, great attention is paid to the issue of catalyst synthesis technology. At present, nanoscale structures [7–9] have found wide application in various branches of science and technology. In particular, they have proven themselves in catalysis [10]. Hence, technologies of nanostructured catalysts synthesis are promising trend of modern materials science [11].



The investigations were realized with partial financial support of NAS of Ukraine Fundamental Programme “Fine Chemicals”, Project 20-(14-16).


  1. 1.
    Giornelli T, Lofberg А, Bordes-Richard Е (2006) Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors. Appl Catal A Gen 305:197–203CrossRefGoogle Scholar
  2. 2.
    Vaneman GL (1991) Comparison of metal foil and ceramic monolith automotive catalytic converters. Catal automot pollut control II 71:537–555Google Scholar
  3. 3.
    Muraoka S, Kitamura K, Kishi S et al (2007) Development of efficient metal catalyst support. Mater Sci Forum 561–565(1):547–550CrossRefGoogle Scholar
  4. 4.
    Wyrwa DW, Schmid G (2007) Metal nanoparticles on stainless steel surfaces as novel heterogeneous catalysts. J Clust Sci 18(3):476–493CrossRefGoogle Scholar
  5. 5.
    Kaltner W, Veprek-Heijman M, Jentys A et al (2009) Effect of chromium migration from metallic supports on the activity of diesel exhaust catalysts. Appl Catal Environ 89:123–127CrossRefGoogle Scholar
  6. 6.
    Zamaro JM, Ulla MA, Miro EE (2008) ZSM5 growth on a FeCrAl steel support. Coating characteristics upon the catalytic behavior in the NOx SCR. Microporous and Mesoporous Mater 115:113–122CrossRefGoogle Scholar
  7. 7.
    Bogdanov NY (2008) Nonastructuring of metal materials by intense ion beams. Fizika i Khimiya Obrabotki Materialov 40(44):8–44Google Scholar
  8. 8.
    Zazhigalov VA, Honcharov VV (2014) Formirovaniye nanorazmernogo pokrytiya na stali 12H18N10T pri ionnoy implantatsii. Metallofizika i Noveishie Tekhnologii 6(36):757–766Google Scholar
  9. 9.
    Cherny AA, Maschenko SV, Honcharov VV et al (2015) Nanodimension layers on stainless steel surface synthesized by ionic implantation and their simulation. In: Nanoplasmonics, nano-optics, nanocomposites and surface studies. Springer, Cham, pp 203–213CrossRefGoogle Scholar
  10. 10.
    Chena J, Li Y, Li Z et al (2004) Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni–Cu–alumina catalysts. Appl Catal Gen 269:179–186CrossRefGoogle Scholar
  11. 11.
    Honcharov V, Zazhigalov V, Sawlowicz Z, Socha R, Gurgol J (2017) Structural, catalytic, and thermal properties of stainless steel with nanoscale metal surface layer. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, interface studies, and applications. NANO 2016. Springer proceedings in physics, vol 195. Springer, ChamGoogle Scholar
  12. 12.
    Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59CrossRefGoogle Scholar
  13. 13.
    Thompson TL, Yates JT (2006) Surface science studies of the pho-toactivation of TiO2 new photochemical processes. Chem Rev 106:4428–4453CrossRefGoogle Scholar
  14. 14.
    Hiroshi I, Yuka W, Kazuhito H (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32(8):772–773CrossRefGoogle Scholar
  15. 15.
    Lin X, Rong F, Fu D, Yuan C (2012) Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol 219:173–178CrossRefGoogle Scholar
  16. 16.
    Rachel A, Subrahmanyan M, Boule P (2002) Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for photocatalytic degradation of nitrobenzenesulfonic acids. Appl Catal B Environ 37:301–308CrossRefGoogle Scholar
  17. 17.
    Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis. A review. Appl Catal A General 389:1–8CrossRefGoogle Scholar
  18. 18.
    Magali BK, Sven GJ (1996) A review of the use of plasma techniques in catalyst preparation and catalytic reactions. Appl Catal Gen 147:1–21CrossRefGoogle Scholar
  19. 19.
    Liu CJ, Vissokov G, Jang BWL (2002) Catalyst preparation using plasma technologies. Catalysis Today 72:173–184CrossRefGoogle Scholar
  20. 20.
    Durme JV, Dewulf J, Leys C et al (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal Environ 78:324–333CrossRefGoogle Scholar
  21. 21.
    Kalin BA (2001) Radiatsionno-puchkovyye tekhnologii obrabotki konstruktsionnykh materialov. Fizika i khimiya obrabotki materialov 4:5–16Google Scholar
  22. 22.
    Wang H, Zhang S, Yu D et al (2011) Surface modification of (Tb, Dy)Fe2 alloy by nitrogen ion implantation. J Rare Earths 29(9):878–882CrossRefGoogle Scholar
  23. 23.
    Khirvonen DK (1985) Ionnaya implantatsiya. Metallurgiya, MoskvaGoogle Scholar
  24. 24.
    Kang TJ, Kim JG, Lee HY et al (2014) Modification of optical and mechanical surface properties of sputter-deposited aluminum thin films through ion implantation. Int J Precis Eng Manuf 15(5):889–894CrossRefGoogle Scholar
  25. 25.
    Zazhigalov VA, Honcharov VV, Bacherikova IV, Socha R, Gurgul J (2018) Formation of nanodimension layer of catalytically active metals on stainless stail surface by ionic implantation. Theor Experim Chem 34(2):128–137CrossRefGoogle Scholar
  26. 26.
    Dudognon J, Vayer M, Pineau A et al (2008) Grazing incidence X-ray diffraction spectra analysis of expanded austenite for implanted stainless steel. Surf Coat Technol 202(20):5048–5054CrossRefGoogle Scholar
  27. 27.
    Dudognon J, Vayer M, Pineau A et al (2008) Mo and Ag ion implantation in austenitic, ferritic and duplex stainless steels: a comparative study. Surf Coat Technol 203:180–185CrossRefGoogle Scholar
  28. 28.
    Li X, Xiong R, Wei G (2008) S–N Co-doped TiO2 photocatalysts with visible-light activity prepared by sol–gel method. Catal Lett 125(1–2):104–109Google Scholar
  29. 29.
    Zazhigalov VA, Sidorchuk VV, Khalamieda SV, Kuznetsova LS (2008) Mechanochemical synthesis of BaTiO3 from barium titanyl oxalate. Inorg Chem 44(6):641–645Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. Honcharov
    • 1
  • V. Zazhigalov
    • 2
  • O. Sanzhak
    • 2
  • F. Azimov
    • 2
  • D. Brazhnyk
    • 2
  • M. Parlinska-Wojtan
    • 3
  • E. Drzymala
    • 3
  1. 1.State Establishment “Lugansk State Medical University”RubizhneUkraine
  2. 2.Institute for Sorption and Problems of Endoecology, National Academy of Sciences of UkraineKyivUkraine
  3. 3.Institute of Nuclear Physics, PASKrakowPoland

Personalised recommendations