Advertisement

Influence of Mg Content on Structural and Magnetic Properties of Green-Synthesized Li0.5–0.5xMgxFe2.5–0.5xO4 (0.0 ≤ x ≤ 0.8) Nanoferrites

  • P. Tiwari
  • S. N. Kane
  • R. Verma
  • T. Tatarchuk
  • F. Mazaleyrat
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

Honey green synthesis of Li0.5–0.5xMgxFe2.5–0.5xO4 (x = 0.0, 0.1, 0.4, 0.6, 0.8) ferrites, thermally annealed at 450 °C for 3 hours, is reported. Structural, magnetic properties were investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). An antistructural modeling was used for describing active surface centers in the studied samples. XRD validates the formation of nanocrystalline spinel phase with Scherrer’s grain diameter varying between 23.4 and 26.3 nm. The present study implies that Mg2+ addition: (i) Modifies experimental lattice parameter (aexp), showing incorporation of Mg2+ ion in the spinel lattice (ii) Leads to cationic redistribution, showing the presence of Fe3+, Li1+, and Mg2+ ions on A and B sites (iii) Changes inversion parameter “δ” range between 0.65 and 0.75, demonstrating the mixed spinel character (iv) Alters saturation magnetization (Ms (exp)), understood in terms of cationic redistribution at A and B sites (v) Alters coercivity “Hc” (range between 90.3 Oe and 126.7 Oe) and shows more softer magnetic behavior for higher Mg content (vi) Affects Hc, and its variation with grain diameter D suggests that the studied samples fall in the overlap between single-domain or multi-domain structures (vii) Shows discrepancy between the experimental and calculated Ms values, suggesting that the magnetic arrangement of spins in the studied samples is not governed by a perfectly collinear antiparallel alignment, as proposed by Néel’s model, but rather affected by a spin canting (evidenced by finite canting angleαy-k”) in the studied samples which can be explained by the three-lattice model suggested by Yafet and Kittel.

Notes

Acknowledgments

The authors thank Dr. M. Gupta, UGC-DAE CSR, Indore, for XRD data. SNK gratefully acknowledges 1-month invited professor stay at ENS Universite Paris-Saclay, Cachan (France), during June 2018. This work is partially supported by UGC-DAE CSR, Indore, in the form of a research project. T. Tatarchuk is grateful to the Ministry of Education and Science of Ukraine (Project Numbers 0118U000258 and 0117U002408) for their financial support.

References

  1. 1.
    Raghuvanshi S, Mazaleyrat F, Kane SN (2017) Time evolution of structural and magnetic properties of Ni-Zn nano ferrite: an opinion. JOJ Mater Sci 1(2).  https://doi.org/10.19080/JOJMS.MS.ID.555561
  2. 2.
    Wang ZL, Liu Y, Zhang Z (2002) Handbook of nanophase and nanostructured materials, vol 3. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  3. 3.
    An K, Hyeon T (2009) Synthesis and biomedical applications of hollow nanostructures. Nano Today 4:359–373CrossRefGoogle Scholar
  4. 4.
    Guido B, Elisabetta F, Vincenzo L, Marcella T, Rossinib SA (1996) IR study of alkene allylic activation on magnesium ferrite and alumina catalysts. J Chem Soc 92(23):4687–4693Google Scholar
  5. 5.
    Gastaldi L, Lapiccirella A (1979) Three different methods of determining the cation distribution in spinels: a comparison. J Solid State Chem 30:223–229ADSCrossRefGoogle Scholar
  6. 6.
    Birgani AN, Mohammad N, Hasanpou A (2015) Study of cation distribution of spinel zinc nano-ferrite by X-ray. J Magn Magn Mater 374:179–181ADSCrossRefGoogle Scholar
  7. 7.
    Kurmude DV, Barkule RS, Raut AV, Shengule DR, Jadhav KM (2013) X-Ray diffraction and cation distribution studiesin zinc-substituted nickel ferrite nanoparticles. J Supercond Nov Magn.  https://doi.org/10.1007/s10948-013-2305-2 CrossRefGoogle Scholar
  8. 8.
    Yadav RS, Kuřitka I, Vilcakova J, Havlica J, Masilko J, Kalina L, Tkacz J, Švec J, Enev V, Hajdúchová M (2017) Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv Nat Sci Nanosci Nanotechnol 8:045002ADSCrossRefGoogle Scholar
  9. 9.
    Gingasu D, Mindru L, Preda S, Calderonmoreno JM, Culita DC, Patron L, Diamandescu L (2017) Green synthesis of cobalt ferrite nanoparticles using plant extracts. Rev Roum Chim 62:645–653Google Scholar
  10. 10.
    Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SHJ, Hussein-Al-Ali S, Hussein MZ, Eid EEM, Zainal Z, Saeed M, Ilowefah M, Fakurazi S, Isa NM, Zowalaty MEE (2013) Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin. Int J Nanomedicine 8:2497–2508CrossRefGoogle Scholar
  11. 11.
    Watawe SC, Keluskar S, Gonbare T (2006) Preparation and magnetic properties of cadmium substituted lithium ferrite using microwave-induced combustion. Thin Solid Films 505:168–172ADSCrossRefGoogle Scholar
  12. 12.
    Akhter S, Hakim MA (2010) Magnetic properties of cadmium substituted lithium ferrites. Mater Chem Phys 120:399–403CrossRefGoogle Scholar
  13. 13.
    Vijaya Bhasker Reddy P, Ramesh B, Reddy Ch G (2010) Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol–gel method. Physica B 405:1852–1856ADSCrossRefGoogle Scholar
  14. 14.
    Panchal S, Raghuvanshi S, Gahlot K, Mazaleyrat F, Kane SN (2016) Cationic distribution assisted tuning of magnetic properties of Li0.5-x/2ZnxFe2.5- x/2O4. AIP Adv 6:055930–055936ADSCrossRefGoogle Scholar
  15. 15.
    Shobana MK (2012) Electrical and structural studies of lithium doped cobalt ferrite. J Phys Chem Solids 73:1040–1043ADSCrossRefGoogle Scholar
  16. 16.
    Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Crystallogr 23:246–252CrossRefGoogle Scholar
  17. 17.
    Bertaut EF (1950) C R Acad Sci 230:213Google Scholar
  18. 18.
    Verma R, Kane SN, Raghuvanshi S, Satalkar M, Modak SS, Mazaleyrat F (2018) Synthesis, structural and magnetic properties of Mg0.6Zn0.4CrxFe2-xO4 (0.0 ≤ x ≤ 2.0) nano ferrite. AIP Conf Proc 1953:030135–1–030135–4Google Scholar
  19. 19.
    Raghuvanshi S, Mazaleyrat F, Kane SN (2018) Mg1-xZnxFe2O4 nanoparticles: interplay between cation distribution and magnetic properties. AIP Adv 8:047804–1-047804-11ADSCrossRefGoogle Scholar
  20. 20.
    Revathi V, Karthik K (2018) Microwave assisted CdO–ZnO–MgO nanocomposite and its photocatalytic and antibacterial studies. J Mater Sci: Mater El 29(21):18519–18530.  https://doi.org/10.1007/s10854-018-9968-1 CrossRefGoogle Scholar
  21. 21.
    Patange SM, Shirsath SE, Jadhav SS, Jadhav KM (2012) Cation distribution study of nanocrystalline NiFe2−xCrxO4 ferrite by XRD, magnetization and Mössbauer spectroscopy. Phys Status Solidi A 209(2):347–352ADSCrossRefGoogle Scholar
  22. 22.
    Murthy NSS, Natera MG, Youssef SI, Begum RJ, Srivastava CM (1969) Yafet-kittel angles in zinc-nickel ferrites. Phys Rev 181:969–977.  https://doi.org/10.1103/PhysRev.181.969 ADSCrossRefGoogle Scholar
  23. 23.
    Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee T (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009CrossRefGoogle Scholar
  24. 24.
    Tatarchuk TR, Bououdina M, Paliychuk ND, Yaremiy IP, Moklyak VV (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd 694:777–791.  https://doi.org/10.1016/j.jallcom.2016.10.067CrossRefGoogle Scholar
  25. 25.
    Babu RB, Tatarchuk T (2018) Elastic properties and antistructural modeling for nickel-zinc ferrite-aluminates. Mater Chem Phys 207:534.  https://doi.org/10.1016/j.matchemphys.2017.12.084CrossRefGoogle Scholar
  26. 26.
    Kane SN, Raghuvanshi S, Satalkar M, Reddy VR, Deshpande UP, Tatarchuk TR, Mazaleyrat F (2018) Synthesis, characterization and antistructure modeling of Ni nano ferrite. AIP Conf Proc 1953:030089.  https://doi.org/10.1063/1.5032424CrossRefGoogle Scholar
  27. 27.
    Prabukanthan P, Lakshmi R, Harichandran G, Tatarchuk T (2018) Photovoltaic device performance of pure, manganese (Mn2+) doped and irradiated CuInSe2 thin films. New J Chem 42:11642.  https://doi.org/10.1039/C8NJ01056KCrossRefGoogle Scholar
  28. 28.
    Rajesh Kumar T, Prabukanthan P, Harichandran G, Theerthagiri J, Tatarchuk T, Maiyalagan T, Maia G, Bououdina M (2018) Physicochemical and electrochemical properties of Gd3+-doped ZnSe thin films fabricated by single-step electrochemical deposition process. J Solid State Electrochem 22:1197.  https://doi.org/10.1007/s10008-017-3865-zCrossRefGoogle Scholar
  29. 29.
    Ahmed MA, Hassan HE, Eltabey MM, Latka K, Tatarchuk T (2018) Mössbauer spectroscopy of MgxCu0.5−xZn0.5Fe2O4 (x = 0.0, 0.2 and 0.5) ferrites system irradiated by γ-rays. Phys B Condens Matter 530:195.  https://doi.org/10.1016/j.physb.2017.10.125ADSCrossRefGoogle Scholar
  30. 30.
    Raghuvanshi S, Tiwari P, Kane SN, Avasthi DK, Mazaleyrat F, Tatarchuk T, Mironyuk I (2019) Dual control on structure and magnetic properties of mg ferrite: role of swift heavy ion irradiation. J Magn Magn Mater 471:521.  https://doi.org/10.1016/j.jmmm.2018.10.004ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. Tiwari
    • 1
    • 2
  • S. N. Kane
    • 1
  • R. Verma
    • 1
  • T. Tatarchuk
    • 3
    • 4
  • F. Mazaleyrat
    • 5
  1. 1.Magnetic Materials Laboratory, School of Physics, D. A. UniversityIndoreIndia
  2. 2.Department of PhysicsPrestige Institute of Engineering Management and ResearchIndoreIndia
  3. 3.Department of ChemistryVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  4. 4.Educational and Scientific Center of Materials Sciences and Nanotechnology, Vasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  5. 5.SATIE, ENS Cachan, CNRS 8029, Universite Paris-SaclayCachanFrance

Personalised recommendations