Advertisement

Green Synthesis of Magnetic Spinel Nanoparticles

  • Mariia Liaskovska
  • Tetiana Tatarchuk
  • Mohamed Bououdina
  • Ivan Mironyuk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

This review discusses different techniques for green synthesis of magnetic spinel nanoparticles (magnetite, cobalt ferrite, nickel ferrite, cupper ferrite, and their composites). The green methods lead to the formation of nanoparticles with less toxicity, high sustainability, and improved physicochemical properties. The aim of green chemistry is to involve the nontoxic capping and reducing agents, obtained from nature (extracts of plant leaves, plant roots, fruits, seeds, etc.) for nanoparticle synthesis process. “Green” spinel nanoparticles can be formed at certain temperatures and pH in order to obtain the desired morphology and particle size, thereby offering potential and promising applications in biomedical, magnetic hyperthermia, biocatalysis, drug delivery systems, etc.

Keywords

Green chemistry Magnetic nanoparticles Spinel ferrite Plant extract 

Notes

Acknowledgments

The authors are grateful to the Ministry of Education and Science of Ukraine (Project Numbers 0118U000258 and 0117U002408) for their financial support.

References

  1. 1.
    Koseoglu Y et al (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38:3625–3634CrossRefGoogle Scholar
  2. 2.
    Tatarchuk T et al (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd 694:777–791CrossRefGoogle Scholar
  3. 3.
    Tatarchuk TR et al (2018) Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J Alloys Compd 731:1256–1266.  https://doi.org/10.1016/j.jallcom.2017.10.103 CrossRefGoogle Scholar
  4. 4.
    Kanagesan S (2013) Sol-gel auto-combustion synthesis of cobalt ferrite and it’s cytotoxicity properties. Dig J Nanomater Biostruct 8:1601–1610Google Scholar
  5. 5.
    Tatarchuk T et al (2018) Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mossbauer studies. Mol Cryst Liq Cryst.  https://doi.org/10.1080/15421406.2018.1542107 CrossRefGoogle Scholar
  6. 6.
    Raghuvanshi P et al (2019) Dual control on structure and magnetic properties of Mg ferrite: role of swift heavy ion irradiation. J Magn Magn Mater 471:521–528.  https://doi.org/10.1016/j.jmmm.2018.10.004 ADSCrossRefGoogle Scholar
  7. 7.
    Kane SN et al (2018) Synthesis, characterization and antistructure modeling of Ni nano ferrite. AIP Conf Proc 1953:030089.  https://doi.org/10.1063/1.5032424 CrossRefGoogle Scholar
  8. 8.
    Rajesh Babu B, Tatarchuk T (2018) Elastic properties and antistructural modeling for nickel-zinc ferrite-aluminates. Mater Chem Phys 207:534–541.  https://doi.org/10.1016/j.matchemphys.2017.12.084 CrossRefGoogle Scholar
  9. 9.
    Moayyer HA, Ataie A (2014) Investigation on phase evolution in the processing of nano-crystalline cobalt ferrite by solid-state reaction route. Adv Mater Res 829:767–771CrossRefGoogle Scholar
  10. 10.
    Saha M et al (2016) Microstructure, optical and magnetic properties of inverse spinel CoFe2O4 synthesized by microemulsion process assisted by CTAB and AOT. Aust Ceram Soc 52:150–162Google Scholar
  11. 11.
    El-Fadl A et al (2019) Synthesis and magnetic properties of spinel Zn1−xNixFe2O4 (0.0 ≤ x ≤ 1.0) nanoparticles synthesized by microwave combustion method. Magn Magn Mater 471:192–199.  https://doi.org/10.1016/j.jmmm.2018.09.074 ADSCrossRefGoogle Scholar
  12. 12.
    Rashidi S, Ataie A (2014) One-step synthesis of CoFe2O4 nano-particles by mechanical alloying. Adv Mater Res 829:747–751CrossRefGoogle Scholar
  13. 13.
    Mazarío E et al (2012) Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23:355–708CrossRefGoogle Scholar
  14. 14.
    Vaseghi Z et al (2017) Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review.  https://doi.org/10.1515/revce-2017-0005 CrossRefGoogle Scholar
  15. 15.
    Nadeem M et al (2018) The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem Lett Rev 11:492–502CrossRefGoogle Scholar
  16. 16.
    Liang Y et al (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134:3517–3523CrossRefGoogle Scholar
  17. 17.
    Lavela P et al (2007) Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochimia 52:7986–7995CrossRefGoogle Scholar
  18. 18.
    Zhou L et al (2012) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748CrossRefGoogle Scholar
  19. 19.
    Rios E et al (1998) Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3/xO4 system. Electrochim Acta 44:1491–1497CrossRefGoogle Scholar
  20. 20.
    Habjanic J et al (2014) A 3D oxalate-based network as a precursor for the CoMn2O4 spinel: synthesis and structural and magnetic studies. Inorg Chem 53:9633–9643CrossRefGoogle Scholar
  21. 21.
    Maiyalagan T et al (2014) Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat Commun 5:3949ADSCrossRefGoogle Scholar
  22. 22.
    Li C et al (2015) Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat Res 6:7345.  https://doi.org/10.1038/ncomms8345 CrossRefGoogle Scholar
  23. 23.
    Azarifar D et al (2016) Silica-modified magnetite Fe3O4 nanoparticles grafted with sulfamic acid functional groups: an efficient heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-one and tetrahydrobenzo[b]pyran derivatives. J Sulfur Chem 37:656–673CrossRefGoogle Scholar
  24. 24.
    Gawande MB et al (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393CrossRefGoogle Scholar
  25. 25.
    Hardani K et al (2015) Removal of toxic mercury (II) from water via Fe3O4 /hydroxyapatite nanoadsorbent: an efficient, economic and rapid approach. Amer Assoc Sci Tech J Nanosci 1:11–18Google Scholar
  26. 26.
    Liu M et al (2017) One-pot synthesis of in-situ carbon-coated Fe3O4 as a long-life lithium-ion battery anode. Nanotechnology 28:1–9Google Scholar
  27. 27.
    El Ghandoor H et al (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7:5734–5745Google Scholar
  28. 28.
    Karimzadeh et al (2017) Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: a facile and scalable preparation route based on the cathodic electrochemical deposition method. Adv Phys Chem 2017:9437487Google Scholar
  29. 29.
    Pin Yew Y et al (2018) Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2018.04.013
  30. 30.
    Kombaiah K et al (2018) Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Mater Chem Phys 204:410–419CrossRefGoogle Scholar
  31. 31.
    Gingasu D et al (2016) Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. J Nanomater 2016:2106756. HindawiCrossRefGoogle Scholar
  32. 32.
    Gingasu D et al (2017) Green synthesis of cobalt ferrite nanoparticles using plant extracts. Rev Roum Chim 62:645–653Google Scholar
  33. 33.
    Laokul P et al (2011) Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr Appl Phys 11:101–108ADSCrossRefGoogle Scholar
  34. 34.
    Karunakaran G et al (2018) Green synthesis of NiFe2O4 spinel-structured nanoparticles using Hydrangea paniculata flower extract with excellent magnetic property. Miner Met Mater Soc 70:1337–1343CrossRefGoogle Scholar
  35. 35.
    Reza M et al (2016) Green synthesis of NiFe2O4/Fe2O3/CeO2 nanocomposite in a walnut green hulls extract medium: magnetic properties and characterization. Curr Nanosci 12:1.  https://doi.org/10.2174/1573413712666160513124809 CrossRefGoogle Scholar
  36. 36.
    Surendra BS (2018) Green engineered synthesis of Ag-doped CuFe2O4: characterization, cyclic voltammetry and photocatalytic studies. J Sci: Adv Mater Dev 3:44–50.  https://doi.org/10.1016/j.jsamd.2018.01.005 CrossRefGoogle Scholar
  37. 37.
    Chutia R, Chetia B (2018) Biogenic CuFe2O4 magnetic nanoparticles as a green, reusable and excellent nanocatalyst for acetylation reactions under solvent-free conditions. New J Chem 42(18):15200–15206.  https://doi.org/10.1039/c8nj02685h CrossRefGoogle Scholar
  38. 38.
    Naghikhani R et al (2017) Simple and green synthesis of CuFe2O4–CuO nanocomposite using some natural extracts: photo-degradation and magnetic study of nanoparticles. Mater Electron 29:4689–4703.  https://doi.org/10.1007/s10854-017-8421-1 CrossRefGoogle Scholar
  39. 39.
    Lunge S et al (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31.  https://doi.org/10.1016/j.jmmm.2013.12.008 ADSCrossRefGoogle Scholar
  40. 40.
    Venkateswarlu S et al (2014) A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb(II) from aqueous environment. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2014.09.006 CrossRefGoogle Scholar
  41. 41.
    Bahadur A et al (2017) Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies. Mater Chem Phys 198:229–235CrossRefGoogle Scholar
  42. 42.
    Niraimathee VA et al (2016) Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Environ Sust Dev 15:227.  https://doi.org/10.1504/ijesd.2016.077370 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariia Liaskovska
    • 1
    • 2
  • Tetiana Tatarchuk
    • 1
    • 3
  • Mohamed Bououdina
    • 4
  • Ivan Mironyuk
    • 1
  1. 1.Department of ChemistryVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  2. 2.Department of Biological and Medical Chemistry named after academician Babenko H.O.Ivano-Frankivsk National Medical UniversityIvano-FrankivskUkraine
  3. 3.Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  4. 4.Department of PhysicsCollege of Science, University of BahrainZallaqKingdom of Bahrain

Personalised recommendations